Category Archives: intelligence

Neurological correlates of Poverty

While people generally do not squirm on reading a headline claiming neural correlates of religion, god, trust, consciousness, political/ sexual orientation etc, I am sure the title neural correlates of Poverty would have lead to some uneasy shuffling around. How can poverty that is clearly a result of economic opportunities/ capabilities be reduced to brain? Are we claiming that low inherent IQ and the neural correlates thereof define and lead to poverty? Or is the claim instead that poverty leads to definite changes in the brain, which may lead to manifestation of low IQ and the sustenance of the vicious circle of poverty? The regular readers of the blog will know which side of the fence I am sitting on!

The blogosphere is normally abuzz with controversial topics like atheism, meaninglessness of evolution and race and gender differences(for eg.  in IQ) and people defend these sacred dictum doggedly, claiming that ‘is’ and ‘ought’ need not be confused, especially in a cold, logical science which deals with all facts and should not be guided by values. Yet, the same blogosphere generally silently ignores, or does not take a stand , when the ‘is’ and ‘ought’ are in sync and something morally significant is also found to be scientifically valid. Rather the apology for such facts is made very cautiously, with the spirit of not offending the people who have a different, and in my view, an inferior moral system.

I believe whenever people discuss poverty/SES, they have either of the two moral systems: first, the world is unfair and poor people are poor because of some external factors/ circumstances; addressing them may solve/ eliminate the problem of poverty;  and second: the world is fair (like an idealized free market) and if someone is poor they are due to either inherent internal flaws (bad genes) or maybe bad choices (they want to be poor/ are lazy and unindustrious etc); so the problem of poverty cannot/ should not be solved.  I subscribe to the first moral system and believe in interventions to solve the problem of poverty. I am glad to have scientific facts to my side and have been addressing these issues in a series of posts .

The latest impetus to write on the topic comes form reading Lehrer’s post titled Poverty and the brain at the Frontal cortex and I am glad to have found a fellow blogger who doesn’t mind speaking on such controversial topics and take a stand for ‘is’ that is in sync with ‘ought’. It is an excellent post regarding how early interventions can help alleviate poverty and how a poor person suffers from the viscous circle of poverty by the mediating influence of brain and IQ.

Lehrer also mentions the work of Martha Farah (of Visual Agnosia fame whose earlier work was on vision) on the same and I recommend reading at least this article by Martha and colleagues, although many other invaluable gems are present on her site.

The article begins with an anecdotal reference to how Martha first became aware of the gravity of the issue, when she saw her babysitters / maids steeped in poverty and the low IQ and SES viscous circle. this resonates with me and I can easily relate to this as my child enjoys a lot of toys while our maid’s children are faced with lack.

I would now quote extensively from the aforementioned article:

It seemed to me that children’s experience of the world is very different in low and middle SES environments. Most middle SES children have abundant opportunities to explore the world, literally, in terms of people met and places seen, and figuratively, in terms of the world of ideas. In contrast, low SES children generally have fewer interactions with the wider world and much of what they do experience is stressful. Basic research with animals has established the powerful effects of both environmental impoverishment and stress on the developing brain.

She then goes on to make out the case for NCC of poverty:

For the sake of exploring the cognitive neuroscience perspective on transgenerational poverty, and discovering what, if anything, it can contribute to correcting socioeconomic inequality, the first order of business is to ask whether socioeconomic status bears any straightforward relation to brain development. On the face of things it might seem unlikely that characteristics such as income, education and job status, which are typically used to estimate SES, would bear any systematic relationship to physiological processes such as those involved in brain development. It is, however, well established that SES affects physical health through a number of different causal pathways (Adler et al. 1994), many of which could play a role in brain development. It is also clear that poverty is associated with differences in brain function on the basis of the differences in standardized test performance cited earlier, as cognitive tests reflect the function of the brain. However, for a cognitive neuroscience approach to be helpful, the relations between socioeconomic status and the brain must be relatively straightforward and generalizable. The first question that my collaborators and I addressed was therefore: Can we generalize about the neurocognitive correlates of socioeconomic status? Once we have established the neurocognitive profile of childhood poverty, we can begin to test more specific hypotheses about causal mechanisms.

I will now digress a little from the main topic and introduce the five neurocognitive systems that Martha and colleagues have identified and how they tested some children from low and middle SES for finding their capabilities in these systems.

The children were tested on a battery of tasks adapted from the cognitive neuroscience literature, designed to assess the functioning of five key neurocognitive systems. These systems are described briefly here.

The Prefrontal/Executive system enables flexible responding in situations where the appropriate response may not be the most routine or attractive one, or where it requires maintenance or updating of information concerning recent events. It is dependent on prefrontal cortex, a late-maturing brain region that is disproportionately developed in humans.

The Left perisylvian/Language system is a complex, distributed system encompassing semantic, syntactic and phonological aspects of language and dependent predominantly on the temporal and frontal areas of the left hemisphere that surround the Sylvian fissure.

The Medial temporal/Memory system is responsible for one-trial learning, the ability to retain a representation of a stimulus after a single exposure to it (which contrasts with the ability to gradually strengthen a representation through conditioning-like mechanisms), and is dependent on the hippocampus and related structures of the medial temporal lobe.

The Parietal/Spatial cognition system underlies our ability to mentally represent and manipulate the spatial relations among objects, and is primarily dependent upon posterior parietal cortex.

The Occipitotemporal/Visual cognition system is responsible for pattern recognition and visual mental imagery, translating image format visual representations into more abstract representations of object shape and identity, and reciprocally translating visual memory knowledge into image format representations (mental images).

Not surprisingly, in view of the literature on SES and standardized cognitive tests, the middle SES children performed better than the low SES children on the battery of tasks as a whole. For some systems, most notably the Left perisylvian/Language system and the Prefrontal/Executive system, the disparity between low and middle SES kindergarteners was both large and statistically significant.

Thus, they found, in a small group of children , that Language and Executive systems’ performance differed in low and middle SES children and they were able to replicate this finding with a larger group of children too. This time they broke executive function further into components and found a finer granularity of how SES affects the brain:

As before, the language system showed a highly significant relationship to SES, as did executive functions including Lateral prefrontal/Working memory and Anterior cingulate/Cognitive control components and the Parietal/Spatial cognition system. With a more demanding delay between exposure and test in the memory tasks, we also found a difference in the Medial temporal/Memory system. Performance on the Parietal/spatial system tests also differed as a function of SES.

They also did some studies with older children and to summarize the results of all these studies in their own words:

In sum, although the outcome of each study was different, there were also commonalities among them despite different tasks and different children tested at different ages. The most robust neurocognitive correlates of SES appear to involve the Left perisylvian/Language system, the Medial temporal/Memory system (insofar as SES effects were found in both studies that tested memory with an adequate delay) and the Prefrontal/Executive system, in particular its Lateral prefrontal/Working memory and Anterior cingulate/Cognitive control components. Children growing up in low SES environments perform less well on tests that tax the functioning of these specific systems.

Next they look at the causal versus correlational nature of findings and if causal, then the directions of causality. It is this paragraph , that amazed me, for they seem to be apologetic for the fact that their findings are also ethically good ones.

Do these associations reflect the effects of SES on brain development, or the opposite direction of causality? Perhaps families with higher innate language, executive and memory abilities tend to acquire and maintain a higher SES. Such a mechanism seems likely, a priori, as it would be surprising if genetic influences on cognitive ability did not, in the aggregate, contribute to individual and family SES. However, it seems also seems likely that causality operates in the opposite direction as well, with SES influencing cognitive ability through childhood environment. Note that the direction of causality is an empirical issue, not an ethical one. The issue of whether and to what extent SES differences cause neurocognitive differences or visa versa should not be confused with the issue of whether we have an obligation to help children of any background become educated, productive citizens.

Then, quite important from this blog’s point of view, they review the literature that supports SES to IQ direction of causality.

Cross-fostering studies of within- and between -SES adoption suggest that roughly half the IQ disparity in children is experiential (Capron & Duyme, 1989; Schiff & Lewontin, 1986). If anything, these studies are likely to err in the direction of underestimating the influence of environment because the effects of prenatal and early postnatal environment are included in the estimates of genetic influences in adoption studies. A recent twin study by Turkheimer and colleagues (2003) showed that, within low SES families, IQ variation is far less genetic than environmental in origin. Additional evidence comes from studies of when, in a child’s life, poverty was experienced. Within a given family that experiences a period of poverty, the effects are greater on siblings who were young during that period (Duncan et al. 1994), an effect that cannot be explained by genetics. In sum, multiple sources of evidence indicate that SES does indeed have an effect on cognitive development, although its role in the specific types of neurocognitive system development investigated here is not yet known.

Next they tried to tease out what specific SES related factors can affect the different neurocognitive systems. They list both physical and psychological factors that have been hypothesized and researched on in relation to SES and IQ.

Potential causes, physical and psychological

What aspects of the environment might be responsible for the differences in neurocognitive development between low and middle SES children? A large set of possibilities exist, some affecting brain development by their direct effects on the body and some by less direct psychological mechanisms. Three somatic factors have been identified as significant risk factors for low cognitive achievement by the Center for Children and Poverty (1997): inadequate nutrition, substance abuse (particularly prenatal exposure), and lead exposure.

As with potential physical causes, the set of potential psychological causes for the SES gap in cognitive achievement is large, and the causes are likely to exert their effects synergistically. Here we will review research on differences in cognitive stimulation and stress.

They then discuss the psychological factors, which they then investigated, in more detail.

One difference between low and middle SES families that seems predictable, even in the absence of any other information, is that low SES children are likely to receive less cognitive stimulation than middle SES children. Their economic status alone predicts that they will have fewer toys and books and less exposure to zoos, museums and other cultural institutions because of the expense of such items and activities. This is indeed the case (Bradley et al. 2001a) and has been identified as a mediator between SES and measures of cognitive achievement (Bradley and Corwyn 1999; Brooks-Gunn and Duncan 1997; McLoyd 1998). Such a mediating role is consistent with the results of neuroscience research with animals. Starting many decades ago (e.g., Volkmar & Greenough, 1972) researchers began to observe the powerful effects of environmental stimulation on brain development. Animals reared in barren laboratory cages showed less well developed brains by a number of different anatomical and physiological measures, compared with those reared in more complex environments with opportunities to climb, burrow and socialize (see van Praag et al 2000 for a review).

The lives of low SES individuals tend to be more stressful for a variety of reasons, some of which are obvious: concern about providing for basic family needs, dangerous neighborhoods, and little control over one’s work life. Again, research bears out this intuition: Turner and Avison (2003) confirmed that lower SES is associated with more stressful life events by a number of different measures. The same appears to be true for children as well as adults, and is apparent in salivary levels of the stress hormone cortisol (Lupien et al. 2001).

Why is stress an important consideration for neurocognitive development? Psychological stress causes the secretion of cortisol and other stress hormones, which affect the brain in numerous ways (McEwen 2000). The immature brain is particularly sensitive to these effects. In basic research studies of rat brain development, rat pups are subjected to the severe stress of prolonged separation from the mother and stress hormone levels predictably climb. The later anatomy and function of the brain is altered by this early neuroendocrine phenomenon. The brain area most affected is the medial temporal area needed for memory, although prefrontal systems involved in the regulation of the stress response are also impacted (Meaney et al. 1996).

They then go on to discuss how this information can be used to formulate mechanisms that mediate the effect of low SES on diffrent neurocognitive systems.

The latest phase of our research is an attempt to make use of the description of the SES disparities in neurocognitive development in testing hypotheses about the causal pathways. Drawing on our previous research that identified three neurocognitive systems as having the most robust differences as a function of SES (Perisylvian/Language, Medial temporal/Memory, and Prefrontal/Executive), we are now testing hypotheses concerning the determinants of individual differences in the development of these systems in children of low SES. Specifically, we are investigating the role of childhood cognitive stimulation and social/emotional nurturance (Farah et al. 2005; Childhood experience and neurocognitive development: Dissociation of cognitive and emotional influences).

They then describe an observational study of interaction between children and parents and how they assess the cognitive simulation an social/emotional nurturance using HOME assessment battery. What they found follows:

Children’s performance on the tests of Left perisylvian/Language was predicted by average cognitive stimulation. This was the sole factor identified as predicting language ability by forward stepwise regression, and one of three factors identified by backwards stepwise regression, along with the child’s gender and the mother’s IQ. In contrast, performance on tests of Medial temporal/Memory ability was predicted by average social/emotional nurturance. This was the sole factor identified as predicting memory ability by forward stepwise regression and one of three factors identified by backwards stepwise regression, along with the child’s age and cognitive stimulation. The relation between memory and early emotional experience is consistent with the animal research cited earlier, showing a deleterious effect of stress hormones on hippocampal development. Our analyses did not reveal any systematic relation of the predictor variables considered here to Lateral prefrontal/Working memory or Anterior cingulate/Cognitive control function. In conclusion, different aspects of early experience affect different systems of the developing brain. Cognitive stimulation influences the development of language, whereas social/emotional nurturance affects the development of memory but not language.

Here is what they conclude:

What are the implications for society of a more mechanistic understanding of the effects of childhood poverty on brain development? To different degrees, and in different ways, we regard children as the responsibility of both parents and society. Parents’ responsibility begins before birth and encompasses virtually every aspect of the child’s life. Society’s responsibility is more circumscribed. In the United States, for example, society’s contribution to the cognitive development of children begins at age 5 or 6, depending on whether public kindergarten is offered. The physical health and safety of all infants and children is a social imperative, however, well before school age. Laws requiring lead abatement in homes occupied by children exemplify our societal commitment to protect them from the neurological damage caused by this neurotoxin. Research on the effects of early life stress and limited cognitive stimulation has begun to show that these concomitants of poverty have negative effects on neurological development too, by mechanisms no less concrete and real. Thus, neuroscience may recast the disadvantages of childhood poverty as a bioethical issue rather than merely one of economic opportunity.

In my view the societal implications are far reaching, if low SES leads to lowered cognitive functioning, it becomes our duty to provide more cognitive stimulation and ensure that all children get sufficient social/ emotional nurturance so that their IQ can flower to its full potential.

I would have liked to end on this note, but cant help pointing that the five neurocognitive systems Martha has identified, to me seems to follow in stages, with the later systems maturing later :

1) Occipital/ visual : describe/ perceive the world/ self
2) Parietal/ spatial:explain the world/self (may be involved in consciousness)
3) Temporal/ Memory: predict the world/self
4) Frontal/ executive: control the world/ self
5) Sylvian/ Language: improve the world/ self

We all know that language abilities develop the oldest and vision is more or less developed at birth; also the fact that SES should affect the latter stages of neurocognitive systems also gels in. the fact that cognitive stimulation affects language and emotional/social nurturance affects memory to me also fits in.

Anyway whatever the implication sof this research for stage theories, they have far reaching and imprortanat implications for social policy and education.
ResearchBlogging.org
Farah, M.J.,Noble, K.G. and Hurt, H. (2005). Poverty, privilege and brain development: Emprical findings and ethical implications. In J. Illes (Ed.) Neuroethics in the 21st Century. New York: Oxford University Press.

IQ and Religion: is the relation mediated by wealth and feelings of control?

Last week, on the blog action day, I re posted one of my earlier posts that questioned Kanazawa’s assertion that IQ causes Longevity (and implicitly that low IQ causes Poverty and not the other way round) and that SES has no effect on longevity net of IQ.  That has been thoroughly dealt with earlier and I will not readdress the issue; suffice it to say that I believe (and think that I have evidence on my side) that shows that in low SES conditions, a Low SES does not lead to full flowering of genetic Intelligence potential and is thus a leading cause of low IQ amongst low SES populations. This Low IQ that is a result of Low SES also gets correlated to longevity; again which would be largely explained by the low SES of the person. But as Low SES leads to less longevity and less IQ , a correlation between IQ and Longevity would also be expected. 

A similar issue has cropped up , this time with respect to religion or belief in God. It has been claimed that high IQ  causes atheism and that low IQ leads to superstition and belief in God. The result, this time by Lynn’s team is again correlational in nature and just like Kanazawa’s study partially relies on Macro-data i.e. mean IQ of a country and its mean religious belief scores.
The abstract of the paper goes like:

Evidence is reviewed pointing to a negative relationship between intelligence and religious belief in the United States and Europe. It is shown that intelligence measured as psychometric g is negatively related to religious belief. We also examine whether this negative relationship between intelligence and religious belief is present between nations. We find that in a sample of 137 countries the correlation between national IQ and disbelief in God is 0.60.

Now, BHA science group , has written a  very good rebuttal to this proposition and I urge readers to go and read the discussion there in full. 
For the sake of completeness, let me summarize the case against the hypothesis that high IQ causes atheism.
Problems with the macro data on which this analysis is made:  for countries that have about 100 (average) mean IQ, the correlation does not hold. The correlation is mainly an artifact of the fact that low mean IQ countries also have high religious belief (see accompanying figure) . We can, in my opinion, thus restrict the discussion to low (mean) IQ countries and try to explain whether its the Low mean IQ of their people that causes religiosity; or that high religiosity somehow leads to low IQ (a very counter-intuitive though indeed); or more plausibly that some other factor like SES/ feelings of control may be the underlying reason for both low IQ and high religiosity. 
Now, I have shown elsewhere that low SES causes low IQ and not the other way round; what remains to be shown is that low SES also causes religious faith. 
The latter part I’ll like to break in two parts: first , I believe that it is intuitive and there would be wealth of data showing that poverty or Low SES leads to fellings of helplessness or feelings of loss of control. Thus , the first assertion is that low mean SES in these countries, leads to the average person feeling less in control of his/her life and thus to feelings of loss of control.
The second part of the argument is that low feelings of control lead to religiosity/ superstition. Again I too have touched this before, but would right now like to point to this recent study that found that feelings of loss of control, lead to magical thinking/ superstitious belief and by extension (I am indeed taking a leap here) propensity towards religiosity. Of course we all know that religion is the opium of the masses (which are usaully poor) and rightly subdues the pwoerlessness and lack of control feelings that are otherwise unbearable.
 
Thus, I rest my case,  claiming that it is the low SES that leads to low IQ and high religious beliefs; the effect being mediated by nutritional/ enriched environmental factors in the former (IQ) case, while that of religion being mediated by feelings of control in the latter case. The actual correlation observed between IQ and religious faith , on the basis of low SES data , is at best spurious and due to the underlying low SES effects. 
  
 

ResearchBlogging.org

Richard Lynn, John Harvey, Helmuth Nyborg (2008). Average Intelligence Predicts Atheism Rates across 137 Nations Intelligence

J. A. Whitson, A. D. Galinsky (2008). Lacking Control Increases Illusory Pattern Perception Science, 322 (5898), 115-117 DOI: 10.1126/science.1159845

Blog Action Day: Poverty and IQ: from the archives

Well, today is blog action day 2008, and the topic for today is Poverty.

I am afraid I will be posting one of my old posts today: a post relating Poverty and SES to IQ and I am also publishing some relevant comments as the comment length generally exceeded the article length:-):

The post, comments and my response to comments are as follows; I would love to rekindle debate on SES/Poverty and IQ again and am looking for more discussions. Also please check out this earlier post on the simillar poverty and IQ topic:

Original Post: Is low IQ the cause of income inequality and low life expectancy or is it the other way round?

As per this post from the BPS research digest, Kanazawa of LSE has made a controversial claim that economic inequality is not the cause of low life expectancy, but that both low life expectancy and economic inequality are a result of the low IQ of the poor people. The self-righteous reasoning is that people with low IQ are not able to adapt successfully to the stresses presented by modern civilization and hence perish. He thinks he has data on his side when he claims that IQ is eight times more strongly related to life expectancy, than is socioeconomic status. What he forgets to mention(or deliberately ignores) is growing evidence that IQ is very much determinant on the socioeconomic environment of its full flowering and a low IQ is because of two components- a low genetic IQ of parent plus a stunted growth of IQ/intelligence due to impoverished environment available because of the low socio-economic status of the parents.

A series of studies that I have discussed earlier, clearly indicate that in the absence of good socioeconomic conditions, IQ can be stunted by as large as 20 IQ points. Also discussed there, is the fact that the modern civilization as a whole has been successful in archiving the sate of socioeconomic prosperity that is sufficient for the full flowering of inherent genetic IQ of a child and as such the increments in IQ as we progress in years and achieve more and more prosperity (the Flynn effect) has started to become less prominent. This fact also explains the Kanazawa finding that in ‘uncivilized’ sub-Saharan countries the IQ is not related to life expectancy, but socio-economic status is. although, he puts his own spin on this data, a more parsimonious ( and accurate) reason for this is that in the sub-Saharan countries, even the well -of don’t have the proper socio-economic conditions necessary for the full flowering of IQ and thus the IQ of both the well-off and poor parents in these countries is stunted equally. Thus, the well-off (which are not really that well-off in comparison to their counterparts in the western countries) are not able to be in any more advantageous position (with respect to IQ) than the poor in these countries. The resultant life expectancy effect is thus limited to that directly due to economic inequality and the IQ mediated effect of economic inequality is not visible.

What Kanazawa deduces from the same data and how he chooses to present these findings just goes on to show the self-righteous WASP attitude that many of the economists assume. After reading Freakonomics, and discovering how the authors twist facts and present statistics in a biased manner to push their idiosyncratic theories and agendas, it hardly seems surprising that another economist has resorted to similar dishonest tactics – shocking people by supposedly providing hard data to prove how conventional wisdom is wrong. Surprisingly, his own highlighting of sub-Saharan counties data that shows that life-expectancy is highly dependent on socio-economic conditions in these countries is highly suggestive of the fact that in cultures where the effects og economic inequality are not mediated via the IQ effects, economic inequality is the strongest predictor of low life expectancy.

Instead of just blaming the people for their genes/ stupidity, it would be better to address the reasons that lead to low IQs and when they are tackled, directly address the social inequality problem , as in the author’s own findings, when IQ is not to blame for the low life expectancy, the blame falls squarely on economic inequality (as in the sub-Saharan countries data) .

7 comments:

Asterion said…

First of all, I beg you pardon for my limited english.
I find quite interesting your findings. But there could be an issue which limits the reasoning: how the IQ is meassured? or what does it really meassures? Does it really defines how smart or clever a person is?
I think there must be a lot of denounces about it. So, I think it’s important to recognize the limits of this aproach based on IQ meassurment limitants. Of course, there could be a reference in your and Kanazawa’s articles (I have not seen none of them).
All of this is beacuse I have met childs quite smarts living in the poorest zones of my city (Bogotá,
Colombia), I would say all of them seems to be quite smart, at least form my point if view. They are all really quick undertanding abstract problems and linking things. I think they have a strong capability to analize any situation. So, if you are able to meassure their IQ using problems wich need, for instance, to apply Phitagora’s theorem, surelly they will be in trouble. So I think education could explain better economic inequalities and, thus, low life expentacy.
I never have explored this issue, so I would thank you refering me to some relevant literature related. Even telling me if I am quite wrong or not.

Always learning…

Sandy G said…

Hi Julian,

I appreciate your thoughtful comments. It is true that intelligence consists of a number of factors (as large as 8-10 broad factors), and is also differentiated as crystallized(Gc) and fluid (Gf); but for most analysis a concept of a general underlying common factor , spearman’s g, is taken as reflective of intelligence and measured by the IQ scores.

In this sense, IQ/g does reflect how clever or smart a person is, but success/outcome in life is affected by other factors like motivation, effort, creativity etc.

I agree that many children in impoverished environments are quite smart, but you would be surprised to discover how providing an enriched environment to them, at their critical developmental periods,would have resulted in lasting intelligence gains. They are smart, but could have been smarter, if they had the right socioeconomic environment. On the other hand, an average child from well-to-do family would be able to maximally develop its inherent capabilities and thus stand a stronger chance than the poor smart child, whose capabilities haven’t flowered fully.

Cultural bias in IQ measures have been found in the past, but the field has vastly improved now and these biases are fast disappearing leading to more accurate and valid cross-cultural comparisons.

The key to remember here is that poor socio-economic condition affects longevity via multiple pathways- one of them is direct by limiting access to good health care and nutrition, but there are also indirect effects mediated by , as you rightly pointed, education (poor people get less education and not vice versa) and also intelligence.

Garett Jones said…

Two words: East Asia.

If bad social and economic outcomes were the key driver of low IQ, then we’d expect East Asians to have had low IQ’s back when they were poor–say, back in the 50’s and 60’s. Check out Table 4 of my paper (page 28) to see if that’s the case…

http://mason.gmu.edu/~atabarro/iqprodprelim.pdf

Guess not. So, East Asians have been beating Causasians on IQ tests (on average) for as far back as we have data. You can get more historical data along these lines from Lynn’s (2006) book, Race Difference in Intelligence.

And one can go even further back if you look at brain size, which correlates about 0.4 with IQ. Asian brains have been well-known to be larger than Caucasian brains for as long as folks have been measuring both of them. Hard to fit that in with WASP-driven science…

So simple reverse causality surely plays some role, but it can’t explain East Asia…..

Sandy G said…

Hi Garret,

Thanks for dropping by and commenting.

I guess we agree on more things, than we disagree on. For example, in section IID of your paper, you concur with my explanation of Flynn effect that it is most probably due to the increase in living conditions and due to environmental factors enabling the full flowering of potential. Environment can and does have a strong disruptive negative effect, though it only has a limited positive enabling effect (no amount of good environment can give you an intelligence that is disproportionate to what your genes endow on you; but even minor lack of right environmental inputs or toxins, can lead to dramatic stunted achievement of that potential intelligence).

Also, it is heartening to note, that early on in your paper you take the position that your paper will not settle genetic vs environmental debate on IQ, but would only provide evidence that national IQ is a good indicator of ntaional productivity.

I have no issue with the same and agree that if one disregards the process by which adult stable IQs are archived, then the stable adult IQ that has been archived would be a very good predictor of productivity and economic status (in a free market environment where other conditions re not adversely affecting success). There is no qualms with the causal relation between a better IQ leading to better SES, in a fair world.

What I do strongly disagree with is the assumption that low IQ is solely dependent on genetic factors. Bad socio-economic factors are the key drivers of low IQ- especially in situations where the socio-economic status is so low that it does’nt guarantee access to basic amenities of life like proper nutrition/ health care.

It is interesting to note that poor SES would cause stunted growth of IQ, and due to the causal relation between IQ and SES would lead to less productivity and lower income, thus maintaining or even aggravating the low SES. This is the downward vicious cycle from which it is very hard to emerge. This type of economy and culture would definitly have lower IQ than what could have been achieved in the right conditions. The sub-saharan countries that Kanazawa used in his study, match this pattern and some of the African countries National IQ (as per data appendix in your paper) viz. Kenya: 72, south afric: 72, ghana : 71 confirms to this pattern).

The opposite observation, that a spiraling economy should radically lead to high IQs is not reasonable, as the circle is vicious only in the downward direction. Monumental leaps in SES would not lead to dramatic effects in IQ, if the earlier SES levels were just sufficient to ensure that no negative effects of environment come into play. The Flynn effect is a tribute to the fact that high jumps in SES (above the base level) only lead to small incremental changes in IQ.

Another thing to keep in mind is that when the SES to low IQ causal link is suggested it is only for the achievement of the stable adult IQ and instrumental during the critical childhood developmental periods. Although, environmental toxins do have the capability to adversely affect IQ during adulthood, and there is emerging evidence for plasticity and neurogenesis in adulthood, a simpler and reasonably model is whereby adult IQ is stable and not much affected by SES changes (either up or down) once it has been stabilized. Thus, even if some positive effects of rising SES have to be observed, they would be observable only in children exposed to that SES and not in the IQ of the rest of the adult population, that has already acheived a stable IQ.

Thus, I do not agree with your explanation of the east Asian example. To me the data set appears to be very limited ( no IQ results before the 1950’s; no data sets for the same country or population over time) and even if we assume that only after the 1980s the SES of these countries rose above the minimal needed SES, we still do not have the data for the IQ of children born under theses SES condition, to proclaim that ther eis no rise in IQ.

Further, it is quite plausible that productivity is dependent on many other factors than IQ, some of which are directly related to SES independent of IQ. Given a base level of SES, in which the East Asians had managed to develop their inherent genetic IQ to the fullest, the SES may still not be good enough to convert that IQ advantage to productivity. For example, a given household that has sufficient SES to provide good nutrition and health care, and thus ensure that its children archive their full IQ potentiality, may still not have enough resources to send them to a good school (or any school for that matter), may lack access to basic infrastructure support which handicaps the utilization of its intelligence and so on. Thus despite having the human capital, lack of the more prosaic monetary capital, may prevent them from archiving their full productivity. Thus, IQ may increase first to the maximal achievable level and only then SES increase dramatically.

It would be interesting to turn the East Asian example on its head and beg the question that if IQ is the definitive causal relation leading to SES , how do you explain the anomaly that despite high IQ’s in 1950s (or for that matter Asian big brain since time immemorial) he East Asian countries did not have the corresponding productivity levels or SES. You might counter by saying that IQ -> SES causal link is mediated by factors like free markets, reforms etc to ensure that proper economic conditions are in place etc etc and only if these ideal market conditions are in place then only IQ predicts SES.

To that my simple counter-argument would be that SES -> IQ causal link also works but only in conditions when the SES is below the base level and that SES would not predict IQ absolutely. Given the same optimal SES in differnet countries, different cultures (which have different genetic pools) will have different IQ levels based on their inherent genetic capabilities.
As per this the IQ of east asians can be explained as either arising from the fact that they have already archived the SES required for full flowering; or that they still have to archive their highest IQ levels and their IQ levels are genetically vastly superior and may show more rise in future.

From Anecdotal evidence I can tell you that an average Indian has far more intelligence and creativity potential that the average IQ of 82 would suggest; most of the high SES families that have archived that high IQ migrate to US/ west and archive high SES there.
What brings down the national average is the sad fact that still a lot of Indians live below the poverty line – living in sub-optimal SES conditions that leads them to have low IQ’ than what their genes or genetic makeup would suggest.

Looking forward to a fruitful discussion.
PS: Despite the tone of my original mail, I have high regards for economists in general and people like Amartya sen, Kahnman and Traversky in particular.

12:31 PM
Anonymous said…

Interesting blog entry. Has the author of it actually read the paper he is criticizing? I noticed that it costs $15 online. If not, is the author of the blog certain that the statistical methods employed by Kanazawa do not take his complaints into account implicitly? One hopes that the author is not criticizing a peer-reviewed scientific paper without having read it.

Sandy G said…

Dear Anonymous,

It would be better if, after having read the paper (otherwise by your own high standards you wouldn’t have defended an article without having read it first), you would be kind enough to tell the readers of this blog how Kanazawa has taken the effects of low SES-low IQ developmentally mediated effect in consideration in his study.

You are correct in guessing that I haven’t read the article (I believe in free access; so neither publish nor read material that is not freely available). I’ll welcome if you or someone else could mail me the relevant portions or post them on this blog (under fair use).

As for invoking authority covertly by referring to peer-review in a prestigious journal, I would like to disclose that I haven’t taken a single course or class in psychology- either in school or college- so if authority is the determinant: you can stick to reading articles in scholarly journals by those who have doctoral degrees. Blogs are not for you. Otherwise, if you believe more in open discussions and logical arguments, lets argue on facts and study method weaknesses etc and rely more on public-review to catch any discrepancies.

What I could gather from the abstract was that “The macro-level analyses show that income inequality and economic development have no effect on life expectancy at birth, infant mortality and age-specific mortality net of average intelligence quotient (IQ) in 126 countries”. I take this to mean, that SES has no effect on longevity , if the effects of IQ are factored out. the ‘if’ is very important. This a very perverse position. This assumes that longevity is due to IQ and if IQ mediated difference in longevity data is factored out, the effcets on longevity of SES are negligible. This depends on an a priori assumption that longevity is primarily explained by IQ; and only after taking its effects into consideration, we need to look for an effect of SES on longevity.

What prevents the other, more valid and real interpretation : that SES predicts longevity and that there is little effect of IQ on longevity net of SES. Here the variation in longevity is explained by SES and after taking that into account, it would be found that, independent of IQ as a consequent of SES, IQ by itself would have little effect on longevity. the same set of data leads to this interpretation, because IQ and SES are related to a great degree and both are also related to longevity. It is just a matter of interpretation, that which is the primary cause and which an effect.

To take an absurd position, I can argue that longevity predicts/ causes both SES and IQ and reverse the causal link altogether. One can take a theoretical stand, that if people live longer , we have more labor force, blah, blah,blah… so more prodcutivity so better SES; further longevity menas that there are more wise old folks in the society and as IQ is mostly deterinmed by social influences (I do not subscribe to this, I am just taking an absurd position to show the absurdity of Kanazawa position), hence longevity of the population(more wise men) causes high IQs.

Also, please note that the above conclusion is only for the macro data he has. That interpretation is independent of his micro level data that found that self-reported health was more predicted by IQ than by SES. That micro data has nothing to do with the interpretation of the macro data. Again I don’t know where he got the micro data, but I’m sure that would be a developed world population sample.
I am somewhat familiar with the macro data on which he is basing such claims, and there I do not see any reason to prefer his interpretation over other more realistic interpretations.

In the future, lets discuss merits of arguments, and not resort to ad hominem attacks over whether someone is qualified to make an argument or not. (in my opinion, by reading an abstract too, one can form a reasonable idea of what the arguments and methodologies employed are, and is thus eligible to comment)

After Social Maturity, Emotional Maturity or EI/ EQ

My last two posts have dealt with the Social Maturity theory of the developmental psychologist Robert Kegan. This post is about emotional maturity as reflected in Emotional quotient (EQ) / Emotional Intelligence (EI).

I presume that everybody is familiar with the term Emotional Intelligence, thanks to Daniel Goleman. It can be defined as:

Emotional Intelligence (EI), often measured as an Emotional Intelligence Quotient (EQ), describes an ability, capacity, skill or (in the case of the trait EI model) a self-perceived ability, to identify, assess, and manage the emotions of one’s self, of others, and of groups.

As per Goleman, a person has many emotional competencies, related and measured by the above EQ, and these fall in five broad domains.

The Five Components of Emotional Intelligence

Self-awareness. The ability to recognize and understand personal moods and emotions and drives, as well as their effect on others. Hallmarks* of self-awareness include self-confidence, realistic self-assessment, and a self-deprecating sense of humor. Self-awareness depend on one’s ability to monitor one’s own emotion state and to correctly identify and name one’s emotions.

Self-regulation.The ability to control or redirect disruptive impulses and moods, and the propensity to suspend judgment and to think before acting. Hallmarks include trustworthiness and integrity; comfort with ambiguity; and openness to change.

Motivation. A passion to work for reasons that go beyond money and status, which are external rewards. A propensity to pursue goals with energy and persistence. Hallmarks include a strong drive to achieve, optimism even in the face of failure, and organizational commitment.

Empathy. The ability to understand the emotional makeup of other people. A skill in treating people according to their emotional reactions. Hallmarks include expertise in building and retaining talent, cross-cultural sensitivity, and service to clients and customers. (In an educational context, empathy is often thought to include, or lead to, sympathy, which implies concern, or care or a wish to soften negative emotions or experiences in others.) See also Mirror Neurons.

It is important to note that empathy does not necessarily imply compassion. Empathy can be ‘used’ for compassionate or cruel behavior. Serial killers who marry and kill many partners in a row tend to have great emphatic skills!

Social skills. Proficiency in managing relationships and building networks, and an ability to find common ground and build rapport. Hallmarks of social skills include effectiveness in leading change, persuasiveness, and expertise building and leading teams.

These can easily be related to the Big five traits (although I am not aware of any research that does so). Below I try to correlate them to the Big five. Some of the material is taken from this source.

I) SELF-AWARENESS:

  • Emotional Awareness:recognizing one’s emotions and their effect
  • Accurate Self-assessment: knowing one’s strengths and limits
  • Self-confidence: A strong sense of one’s self-worth and capabilities

One can easily relate this to Neuroticism as I believe that N underlies the awareness of emotions for the first time in the child.

II) SELF-REGULATION

  • Self-control: Keeping disruptive emotions and impulses in check
  • Trustworthiness: Maintaining standards of honesty and integrity
  • Conscientiousness: Taking responsibility for personal performance
  • Adaptability: Flexibility in handling change
  • Innovation: Being comfortable with novel ideas, approaches and new information

Introduction of Conscientiousness as a sub-competency in this domain makes it easy to correlate this with Conscientiousness . Also note the emphasis on impulses.

III) MOTIVATION

  • Achievement drive: Striving to improve or meet a standard of excellence
  • Commitment: Aligning with the goals of the group or organization
  • Initiative: Readiness to act on opportunities
  • Optimism: Persistence in pursuing goals despite obstacles and setbacks

This can be related to Positive emotionality or Extarversion as the emphasis seems to be on developmental of positive emotions and general energy and motivation level.

IV) EMPATHY

  • Understanding others: sensing others’ feelings and perspectives, taking an active interest in their concerns
  • Developing others: Sensing others development needs and bolstering their abilities
  • Service orientation: Anticipating, recognizing, and meeting customers’ needs
  • Leveraging diversity: Cultivating opportunities through different kinds of people
  • Political Awareness: Reading a group’s emotional currents and power relationships

This also by being named Empathy , is clearly reflective of Agreeableness. The focus for the first time shifts from self to others.

V) SOCIAL SKILLS

  • Influence: Wielding effective tactics for persuasion
  • Communication: Listening openly and sending convincing messages
  • Conflict management: Negotiating and resolving disagreements
  • Leadership: Inspiring and guiding individuals and groups
  • Change Catalyst: Initiating or managing change
  • Building bonds: Nurturing instrumental relationships
  • Collaboration and cooperation: Working with others toward shared goals
  • Team capabilities: creating group synergy in pursuing collective goals

This can be stretched to correlate to Rebelliousness-conformity/ openness/ intellect. It reflects how one uses the acquired emotional knowledge about others emotional states to advantage.

Please note that while the first three domains refer to individual’s self-reflective behavior, the last tow are focused on how individual relates with others. I believe it is possible to move a notch higher and add three more domains to this – one that relate to how groups themselves function effectively in emotional settings. Note that the definition of EI contains references to how groups behave wisely, but that is not captured in above analysis by Goleman, which is confined to individuals self-reflective or other-oriented behavior, but does not cover group dynamics.

Now, many people have dismissed Goleman as Pop science, So I would like to move beyond Goleman to other people working in the same field like Mayor and Salovey and Heins. Mayor and Salovey have defined EI as :

The Four branches of EI:

1. Perception Appraisal and Expression of Emotion
2. Emotional Facilitation of Thinking
3. Understanding and Analyzing Emotions; Employing Emotional Knowledge
4. Reflective Regulation of Emotions to Promote Emotional and Intellectual Growth

Perception, Appraisal and Expression of Emotion

  • Ability to identify emotion in one’s physical states, feelings, and thoughts.
  • Ability to identify emotions in other people, designs, artwork, etc. through language, sound, appearance, and behavior.
  • Ability to express emotions accurately, and to express needs related to those feelings.
  • Ability to discriminate between accurate and inaccurate, or honest vs. dishonest expressions of feeling.

Emotional Facilitation of Thinking

  • Emotions prioritize thinking by directing attention to important information.
  • Emotions are sufficiently vivid and available that they can be generated as aids to judgment and memory concerning feelings.
  • Emotional mood swings change the individual’s perspective from optimistic to pessimistic, encouraging consideration of multiple points of view.
  • Emotional states differentially encourage specific problem-solving approaches such as when happiness facilitates inductive reasoning and creativity.

Understanding and Analyzing Emotions; Employing Emotional Knowledge

  • Ability to label emotions and recognize relations among the words and the emotions themselves, such as the relation between liking and loving.
  • Ability to interpret the meanings that emotions convey regarding relationships, such as that sadness often accompanies a loss.
  • Ability to understand complex feelings: simultaneous feelings of love and hate or blends such as awe as a combination of fear and surprise.
  • Ability to recognize likely transitions among emotions, such as the transition from anger to satisfaction or from anger to shame.

Reflective Regulation of Emotion to Promote Emotional and Intellectual Growth

  • Ability to stay open to feelings, both those that are pleasant and those that are unpleasant.
  • Ability to reflectively engage or detach from an emotion depending upon its judged informativeness or utility.
  • Ability to reflectively monitor emotions in relation to oneself and others, such as recognizing how clear, typical, influential or reasonable they are.
  • Ability to manage emotion in oneself and others by moderating negative emotions and enhancing pleasant ones, without repressing or exaggerating information they may convey.

I would like to modify and extend the Mayor and Salovey breakup of EI into the following eight components. It is also my thesis that they occur in the following order:

  1. Emotional self-Awareness: people can differ in how much aware are they of their own internal emotional states.
  2. Emotional tone/ vivacity : people can differ in how much emotion they feel for the same external / internal triggers. some may have vivid emotions while some may have bland emotions.
  3. Emotional understanding/analysis/ knowledge/ monitoring : people can differ in how they interpret ones emotional states- which states they deem as close, positive, negative etc and whether they identify the states correctly.
  4. Emotional self-regulation: people can differ in their abilities to regulate their emotional states: some states may be more desirable and some need to be replaced with other depending on external exigences.
  5. Emotional Maturity/development/ refinement: people may differ in the extent to which they let their lives be defined by a prominent emotional/ mood state. Some may devlope their primary emotion to be Joy while others may define them primarily by sad emotions.
  6. Emotional others-awareness or empathy: while the discussion till now was focused on the individual’s emotions, it now moves to others’ emotions. People may differ in their ability to perceive and feel the correct emotional state of others
  7. Emotional communication/ labeling/ expression: People may differ in their ability to communicate their emotions to others, to label them correctly in such verbal/ non-verbal communication.
  8. Emotional Integrity/ holism : people may differ in their ability to feel contradictory emotions within themselves and integrate in an overarching integral framework. they may also differ in their ability to judge the honesty or trustworthiness of others’ expressed/ subtle emotions.

To me this seems a promising framework using one which could investigate the EQ/ EI conundrum. However, the above is juts a hypothesis; I believe it is testable and generates many predictions that can, and should, be tested and the theory verified or rejected accordingly. I also belive that these competencies develop in stages and follow a distinct developmental pattern. this too can be verified or rejected.

Baboon Metaphysics: Tabula Rasa and Group IQ


I recently came across this free excerpt from the Baboon Metaphysics: The Evolution of a Social Mind. From the excerpt the book seems very promising.

First, let me tell you how, the book got its name. It got its name from a quote by Darwin, while he was contemplating the debate between empiricists (we gain knowledge from experiences- tabula rasa) and rationalists (we have innate schema, intuition and logic that is independent of experiences) as to how we acquire knowledge, and how evolutionary theory might provide the answers.

With growing excitement, Darwin began to see that his theory might allow him to reconstruct the evolution of the human mind and thereby resolve the great debate between rationalism and empiricism. The modern human mind must acquire information, organize it, and generate behavior in ways that have been shaped by our evolutionary past. Our metaphysics must be the product of evolution. And just as the key to reconstructing the evolution of a whale’s fin or a bird’s beak comes from comparative research on similar traits in closely related species, the key to reconstructing the evolution of the human mind must come from comparative research on the minds of our closest animal relatives. “He who understands baboon would do more towards metaphysics than Locke.”

The authors then go on to confront behaviorist thoughts with experimental results that show that many animals come pre-programed in this world.

Song sparrows (Melospiza melodia) and swamp sparrows (Melospiza georgiana) are two closely related North American birds with very different songs. Males in both species learn their songs as fledglings, by listening to the songs of other males. But this does not mean that the mind of a nestling sparrow is a blank slate, ready to learn virtually anything that is written upon it by experience. In fact, as classic research by Peter Marler and his colleagues has shown, quite the opposite is true. If a nestling male song sparrow and a nestling male swamp sparrow are raised side-by-side in a laboratory where they hear tape-recordings of both species’ songs, each bird will grow up to sing only the song of its own species.

The constraints that channel singing in one direction rather than another cannot be explained by differences in experience, because each bird has heard both songs. Nor can the results be due to differences in singing ability, because both species are perfectly capable of producing each other’s notes. Instead, differences in song learning must be the result of differences in the birds’ brains: something in the brain of a nestling sparrow prompts it to learn its own species’ song rather than another’s. The brains of different species are therefore not alike. And the mind of a nestling sparrow does not come into the world a tabula rasa—it arrives, instead, with genetically determined, inborn biases that actively organize how it perceives the world, giving much greater weight to some stimuli than to others. One can persuade a song sparrow to sing swamp sparrow notes, but only by embedding these notes into a song sparrow’s song. It is almost impossible to persuade a swamp sparrow to sing any notes other than its own. Philosophically speaking, sparrows are Kantian rationalists, actively organizing their behavior on the basis of innate, preexisting schemes.

They then go on to discuss studies by Tolman and his students that gave a blow to behaviorism and introducing knowledge as an intermediary between stimulus and response.

In 1928, Otto L. Tinklepaugh, a graduate student of Tolman’s, began a study of learning in monkeys. His subjects were several macaques who were tested in a room in the psychology department at the University of California at Berkeley (sometimes the tests were held outdoors, on the building’s roof, which the monkeys much preferred). In one of Tinklepaugh’s most famous experiments, a monkey sat in a chair and watched as a piece of food—either lettuce or banana—was hidden under one of two cups that had been placed on the floor, six feet apart and several feet away. The other cup remained empty. Once the food had been placed under the cup, the monkey was removed from the room for several minutes. Upon his return, he was released from the chair and allowed to choose one of the cups. All of Tinklepaugh’s subjects chose the cup hiding the food, though they performed the task with much more enthusiasm when the cup concealed banana.

To illustrate the difference between behaviorist and cognitive theories of learning, pause for a moment to consider the monkey as he waits outside the experimental room after seeing, for example, lettuce placed under the left-hand cup. What has he learned? Most of us would be inclined to say that he has learned that there is lettuce under the left-hand cup. But this was not the behaviorists’ explanation. For behaviorists, the reward was not part of the content of learning. Instead, it served simply to reinforce or strengthen the link between a stimulus (the sight of the cup) and a response (looking under). The monkey, behaviorists would say, has learned nothing about the hidden food—whether it is lettuce or banana. His knowledge has no content. Instead, the monkey has learned only the stimulus-response associations, “When you’re in the room, approach the cup you last looked at” and “When you see the cup, lift it up.” Most biologists and laypeople, by contrast, would adopt a more cognitive interpretation: the monkey has learned that the right-hand cup is empty but there is lettuce under the left-hand cup.

To test between these explanations, Tinklepaugh first conducted trials in which the monkey saw lettuce hidden and found lettuce on his return. Here is his summary of the monkey’s behavior:

Subject rushes to proper cup and picks it up. Seizes lettuce. Rushes away with lettuce in mouth, paying no attention to other cup or to setting. Time, 3–4 seconds.

Tinklepaugh next conducted trials in which the monkey saw banana hidden under the cup. Now, however, Tinklepaugh replaced the banana with lettuce while the monkey was out of the room. His observations:

Subject rushes to proper cup and picks it up. Extends hand toward lettuce. Stops. Looks around on floor. Looks in, under, around cup. Glances at other cup. Looks back at screen. Looks under and around self. Looks and shrieks at any observer present. Walks away, leaving lettuce untouched on floor. Time, 10–33 seconds.

It is impossible to escape the impression that the duped monkey had acquired knowledge, and that as he reached for the cup he had an expectation or belief about what he would find underneath. His shriek reflected his outrage at this egregious betrayal of expectation.

Later they move on to their central premise, that baboons offer a good model to study the evolution of (human) mind.

Moreover, the conservation status of baboons confers neither glamour nor prestige on those who study them. Far from being endangered, baboons are one of Africa’s most successful species. They flourish throughout the continent, occupying every ecological niche except the Sahara and tropical rain forests. They are quick to exploit campsites and farms and are widely regarded as aggressive, destructive, crop-raiding hooligans. Finally, baboons are not particularly good-looking—many other monkeys are far more photogenic. Indeed, through the ages baboons have evoked as much (if not more) repulsion than admiration.

Baboons are interesting, however, from a social perspective. Their groups number up to 100 individuals and are therefore considerably larger than most chimpanzee communities. Each animal maintains a complex network of social relationships with relatives and nonrelatives—relationships that are simultaneously cooperative and competitive. Navigating through this network would seem to require sophisticated social knowledge and skills. Moreover, the challenges that baboons confront are not just social but also ecological. Food must be found and defended, predators evaded and sometimes attacked. Studies of baboons in the wild, therefore, allow us to examine how an individual’s behavior affects her survival and reproduction. They also allow us to study social cognition in the absence of human training, in the social and ecological contexts in which it evolved.

This same theme, of baboons having a greater social/group IQ is also touched upon by fellow ScientificBlogger Howard Bloom in a series of fascinating articles at the Scientificblogging.com, where I also blog. specifically Bloom refers to baboons and how they are smarter than chimpanzees, by being able to adapt to any environment (a more plausible definition of intelligence, instead of the usual anthropomorphic one we are accustomed to).

The ultimate test of intelligence is adaptability—how swiftly you can solve a complex problem, whether that problem is couched in words, in images, in crises, or in everyday life. The arena where intelligence is most important is not the testing room, it’s the real world. When you measure adaptability by the ability to turn disasters into opportunities and wastelands into paradises, bacteria score astonishingly high. But how do big-brained chimpanzees and small-brained baboons do? Or, to put it differently, how adaptable, clever, mentally agile, and able to solve real-world problems have chimpanzees and baboons proven to be?

He illustrates the above with a real world field study case example that showed the high adaptability of baboons.

Baboons have been called “the rats of Africa.” No matter how badly you desecrate their environment, they find a way to take advantage of your outrage. One group, the Pumphouse Gang, was under study for years by primatologist Shirley Strum. When Strum began her baboon-watching, the Pumphouse Gang lived off the land in Kenya and ate a healthy, all-natural diet. They ate blossoms and fruits when those were in season. When there were no sweets and flowery treats, the baboons dug up roots and bulbs.

Then came disaster—the meddling of man. Farmers took over parts of the baboons’ territory, plowed it, built houses, and put up electrified fences around their crops. Worse, the Kenyan military erected a base, put up homes for the officers’ wives and kids, and trashed even more of the baboons’ territory by setting aside former baboon-land for a giant garbage heap. If this had happened to a patch of forest inhabited by chimps, the chimpanzee tribes would have been devastated. But not the baboons.

At first, the Pumphouse Gang maintained its old lifestyle and continued grubbing in the earth for its food. Then came a new generation of adolescents. Each generation of adolescent baboons produces a few curious, unconventional rebels. Normally a baboon trip splits up In small groups and goes off early in the day to find food. But one of the adolescent non-conformists of the Pump House Gang insisted on wandering by himself. His roaming took him to the military garbage dump. The baboon grasped a principle that chimps don’t seem to get. One man’s garbage is another primate’s gold. One man’s slush is another animal’s snow cone.

The baboon rebel found a way through the military garbage heap’s barbed wire fence, set foot in the trash heap, and tasted the throwaways. Pay dirt. He’d hit a concentrated source of nutrition. When they came back to their home base at the end of the day, the natural-living baboons, the ones who had stuck to their traditional food-gathering strategies, to their daily grind digging up tubers, came home dusty and bedraggled, worn out by their work. But the adolescent who invented garbage raiding came back energetic, rested, strong, and glorious. As the weeks and months went by, he seemed to grow in health and vigor. Other young adolescent males became curious. Some followed the non-conformist on his daily stroll into the unknown. And, lo, they too discovered the garbage dump and found it good.

Eventually, the males who made the garbage dump their new food source began to sleep in their own group, separated from the conservative old timers. As they grew in physical strength and robustness, these Young Turks challenged the old males to fights. The youngsters’ food was superior and so was their physical power. They had a tendency to win their battles. Females attracted by this power wandered outside the ancestral troop and spent increasing amounts of time with the rebel males—who continued to increase their supply of high-quality food by inventing ways to open the door latches of the houses of the officers’ wives and taught themselves how to open kitchen cupboards and pantries and who also Invented ways to make their way through the electrified fences of farmers and gather armloads of corn. The health of the males and females in the garbage-picking group was so much better than that of the old troop that a female impregnated in the gang of garbage-pickers and farm-raiders was able to have a new infant every eighteen months. The females in the old, conservative, natural-diet group were stuck with a new infant only every 24 months. The innovators were not only humiliating the conservatives in pitch battles, they were outbreeding them.

I find the above anecdote very appealing. It seems we got to learn a lot from the social species and baboons may just be the ones we should look at more closely.

IQ matters…or does it?

This is just an FYI post regarding two great articles on IQ.

The first addressees the white-black IQ gap and shows that the gap is due to environmental factors and not genetic. This is a well written article by Malcom Gladwell and is strongly recommended to be read in its entirety. The arguments are manifold:

  1. Flynn effects show that IQ scores have increased over time, and hence IQ is malleable and prone to environmental influences.
  2. Intelligence is also a cultural construct and what may be intelligent behavior in one culture may be deemed stupid in another.
  3. Intelligence can be raised by providing the right socio-cultural environment and cognitive grooming and scaffolding. High heritability may partially be due to the fact that high SES groups are considered in such studies. In poor families IQ heritability drops to 10 to 20 % and environmental factors play a much higher role.
  4. IQ tests are renormed (to take care of the Flynn effect and the definition of IQ as relative to mean IQ of population) and sometimes data that supports claims like Asians have higher IQ than white which have higher than blacks are comparing apples to oranges.
  5. IQ gap is narrowing and the average scores of blacks increasing at a faster rate than whites, which is further proof that there is not a racial gap that is due to genetics.

The second article is by Flynn himself and covers some of the same ground. The main essay is followed by several commentaries and it makes for a stimulating exchange.

Rasing Successful kids

Carol Dweck, whose research I have covered extensively earlier, writes in this month’s Scientific American Mind , regarding how to raise a successful child. She touches upon the entity vs incremental theories of intelligence, which she frames as fixed and innate abilities vis-a-vis a growth mindset. As per this theory having successful and intelligent children depends on not praising the children for their smarts or intelligence or talent , but on their efforts and hard work. Also, to inculcate in them a sense of brain’s malleability and to view challenges as resulting in growth as a result of facing difficulties and seeing the challenges as opportunities for brain development and learning. this view purportedly leads to more motivation and effort while facing life challenges or solving educational problems. Ironically, the article is titled The Secret to Raising Smart Kids, while in my opinion , to not reinforce the ‘smart’ stereotype, it should have been labeled The Secret to Raising Successful Kids. this would have also captured the recent Strenberg’s emphasis on successful intelligence.

Nature via Nurture: IQ via breastfeeding

The Nature vs Nurture debate is now old-fashioned and instead enlightened people like Malcom Gladwell have been reformulating it as Nature via Nurture where, for genes to make their impact, appropriate environmental agents have to be present. Ed Yong of the excellent Not Exactly rocket Science blog, blogs about a recent study that shows that IQ differences (of up to 7 points) in people with two different variants of a gene, FADS2, can be accomplished under the environmental conditions of breastfeeding. Thus, the gene, which is instrumental in metabolism of some fatty acids, leads to increase in IQ points, but only if the babies are breast-fed. The link seems that this gene is necessary to metabolize some of the the fatty acids present in mother’s milk.

I especially like the implications for genetics, that Yong derives from this study.

The study also has big implications for gene-hunters. The usual tactic for finding genes linked to physical traits or behaviours is to scan the entire genome for genes that have direct and prominent effects.

But if the team had used this tactic, they would never have billed FADS2 as an IQ-related gene (I’m avoiding using the phrase “a gene for IQ” because it’s trite and misleading). That’s because there are no significant differences between the IQ scores of people with the two FADS2 variants if you take breastfeeding out of the equation. The upshot is that geneticists can look to the environment for important clues when looking for genes that affect human behaviour and health.

For the foreseeable future, it looks like the dichotomy of nature and nurture is dying. It’s proving to be far more interesting to look at how the two interact, and good examples are springing up fast.

Theories of Intelligence : Entity Vs Incremental theory

I have blogged previously about Carol Dweck’s work on how beliefs about intelligence affect performance outcomes. A new paper from her lab demonstrates how having a fixed or entity like belief of intelligence (talent based) leads to poorer academic achievement as compared to students who have a incremental or malleable concept of intelligence (effort and skill based). I’ll let the authors themselves describe the two frameworks:

In this model , students may hold different ‘‘theories’’ about the nature of intelligence. Some believe that intelligence is more of an unchangeable, fixed ‘‘entity’’ (an entity theory). Others think of intelligence as a malleable quality that can be developed (an incremental theory). Research has shown that, even when students on both ends of the continuum show equal intellectual ability, their theories of intelligence shape their responses to academic challenge. For those endorsing more of an entity theory, the belief in a fixed, uncontrollable intelligence ‘a ‘‘thing’’ they have a lot or a little of’ orients them toward measuring that ability and giving up or withdrawing effort if the verdict seems negative. In contrast, the belief that ability can be developed through their effort orients those endorsing a more incremental theory toward challenging tasks that promote skill acquisition and toward using effort to overcome difficulty.

Relative to entity theorists, incremental theorists have been found (a) to focus more on learning goals (goals aimed at increasing their ability) versus performance goals (goals aimed at documenting their ability; (b) to believe in the utility of effort versus the futility of effort given difficulty or low ability (c) to make low-effort, mastery-oriented versus low-ability, helpless attributions for failure and (d) to display mastery-oriented strategies (effort escalation or strategy change) versus helpless strategies (effort withdrawal or strategy perseveration) in the face of setbacks. Thus, these two ways of thinking about intelligence are associated with two distinct frameworks, or ‘‘meaning systems’’ , that can have important consequences for students who are facing a sustained challenge at a critical point in their lives. It is important to recognize that believing intelligence to be malleable does not imply that everyone has exactly the same potential in every domain, or will learn everything with equal ease. Rather, it means that for any given individual, intellectual ability can always be further developed.

The paper presents two studies. In the first study young children entering 7th grade were measured on their theories of intelligences as well as assessed on different motivational factors. Their performance for a couple of years was monitored and the data was analysed to find the relationships between theory of intelligences and performance outcomes and also to determine the mediating motivational factors . The results are as follows :

The process model suggests multiple mediational pathways. That is, it suggests that

(a) learning goals mediate the relation between incremental theory and positive strategies,
(b) positive strategies mediate the relation between learning goals and increasing grades,
(c) effort beliefs mediate the relation between incremental theory and helpless attributions,
(d) effort beliefs mediate the relation between incremental theory and positive strategies,
(e) helpless attributions mediate the relation between effort beliefs and positive strategies,
(f) positive strategies mediate the relation between effort beliefs and increasing grades, and
(g) positive strategies mediate the relation between helpless attributions and increasing grades.

The second study involved an experimental intervention based approach. Those students who had declining grades were divided in two groups- an experimental one which got interventions that endowed them with a malleable and incremental theory of intelligence and a control group. This study found that grades improved for those in the experimental condition. Overall quite a cool research paradigm which has the tremendous potential to affect education as well as achievement outside of academics.

Praise: how to hand it and when to hand it

The traditional press seems to be catching up. The New York Magazine has an article on how praising children for their innate intelligence can backfire, but praising them for their efforts can be redeeming. We, at the Mouse Trap, have already covered the studies of Prof Carol Dwecke here, here and here and had come to the same conclusion that giving positive, specific and outcome based praise is better than giving general and innate/ trait/ talent based praises.

Much of the literature on praise that the New York Magazine author discounts and dismisses, needs to be reviewed with the praise-is-specific vs praise-was-for-talent variable taken into account. Throwing praise out with the ‘talent’ myth would be throwing the baby out with the bathtub. So the only quibble I have with the article is the leaning towards the elimination of all praise for children, a quibble in common with Mind Hacks through which I discovered this article.