The green dot illusion and Opponent Process Theory

Mind Hacks has an interesting article mentioning green-dot illusion. The Green Dot illusion is possible because of the opponent process theory of color perception.

As an aside, for an excellent account on Opponent process theory and how many observable normal and abnormal behaviors may be realized as gated dipole opponent processes please read an article by Grossberg on the same.

As per this theory, as applicable to color-processing (the herring theory), the higher level processing and perception of colors happens as an outcome of 3 opponent processes. Two of these are chromatic processes : one involving red and green opponent process and the other involving blue and yellow. One supposedly “achromatic” opponent process utilizing black and white ‘colors’ is also involved. Thus, while the Hue of any perceived color may be determined by the value of the red green and blue – yellow opponent process; its Saturation (or the grayness or ‘impurity’) may be determined by adding the black-white opponent process value to determine the grayness of the stimuli while some other input (in the ‘luminance’ channel/ magnocellular channel of LGN) may be used for determining the Value or luminance or ‘brightness’ (refer HSV or HSL models of colors).

It is instructive to note that the red-green opponent process is realized by subtracting the output of Medium (green) cone from Long (red) cones and thus the R minus G signal should lead to either excitation of ‘red color perception’ and inhibition of ‘green color perception” or vice versa. Thus, depending on the signal strength and polarity, later processing by neurons would happen as opponent processes, with 1) if red is being perceived then inhibit green-perception and vice versa. Also the blue-yellow opponent process is realized by first summing the Long (red) and Medium( green) cone outputs to create a yellow ( R+G) signal and then subtracting this from the Short (or Blue) cones to give a final B minus Y signal. Again depending on the strength of this signal, either ‘blue color perception’ is encouraged and ‘yellow’ color perception is discouraged or vice versa. When later the B minus Y and R minus G signals are analyzed (and possibly aggregated), one can determine the Hue of the color depending on the relative strength of the 2 signals.

An account of how all hues can be realized using this opponent processing is explained beautifully at this site and I also include a graph from that site for illustration of how all hues (in the humanly visible spectrum) can be realized using these opponent process. That said, there still remains the issue of perception of non-spectrum colors like purple, olive green , brown etc., these have been partly addressed in my earlier post on this matter.

To sum up, the moving green dot illusion works because red and green are opponent processes. When pink (which may be conceived as low-saturation red) dots are present in the visual field, then for that portion of visual filed, Red Qualia is exaggerated and Green Qualia inhibited further down the visual pathways. Prolonged presence of Red stimuli ensures that there is no need to keep inhibiting ‘green qualia’ as habituation happens and as the Red signal is strong and continuous one so the need to inhibit Green does not arise. If one refers to the gated dipole opponent process theory of Grossberg, then it is apparent that due to the gating of the dipole, when the RED stimuli disappears from the on-channel then the ‘off channel’ (corresponding to Green qualia) would result in a sudden rebound and thus momentarily the Green qualia would be perceived. Here it is instructive to note that the signal is R minus G i.e Red is the presence of signal and green the absence (or below threshold or negative signal). Thus the green dot illusion would become more stronger if pure red is used and a similar illusion can be produced by moving yellow dot when blue dots are involved.

Effecient Related Posts:

  • No Related Posts

One thought on “The green dot illusion and Opponent Process Theory

Comments are closed.