Category Archives: perception

Major conscious and unconscious processes in the brain: part 5: Physical substrates of A-cosnciousness

This is the fifth post in my ongoing series on major conscious and unconscious processes in the brain. For earlier parts, click here.

Today , I would like to point to  a few physical models and theories of consciousness that have been proposed that show that consciousness still resides in the brain, although the neural/ supportive processes may be more esoteric. 

I should forewarn before hand that all the theories involve advanced understanding of brains/ physics/ biochemistry etc and that I do not feel qualified enough to understand/ explain all the different theories in their entirety (or even have a surface understanding of them) ; yet , I believe that there are important underlying patterns and that applying the eight stage model to these approaches will only help us further understand and predict and search in the right directions. The style of this post is similar to the part 3 post on robot minds that delineated the different physical approaches that are used to implement intelligence/ brains in machines.

With that as a background, let us look at the major theoretical approaches to locate consciousness and define its underlying substrates. I could find six different physical hypothesis about consciousness on the Wikipedia page:

  1. * Orch-OR theory
  2. * Electromagnetic theories of consciousness
  3. * Holonomic brain theory
  4. * Quantum mind
  5. * Space-time theories of consciousness
  6. * Simulated Reality

Now let me briefly introduce each of the theories and where they seem to have been most successful; again I believe that though this time visually-normal people are perceiving the elephant, yet they are hooked on to its different aspects and need to bind their perspectives together to arrive at the real nature of the elephant.

1. Orch-OR theory:

The Orch OR theory combines Penrose’s hypothesis with respect to the Gödel theorem with Hameroff’s hypothesis with respect to microtubules. Together, Penrose and Hameroff have proposed that when condensates in the brain undergo an objective reduction of their wave function, that collapse connects to non-computational decision taking/experience embedded in the geometry of fundamental spacetime.
The theory further proposes that the microtubules both influence and are influenced by the conventional activity at the synapses between neurons. The Orch in Orch OR stands for orchestrated to give the full name of the theory Orchestrated Objective Reduction. Orchestration refers to the hypothetical process by which connective proteins, known as microtubule associated proteins (MAPs) influence or orchestrate the quantum processing of the microtubules.
Hameroff has proposed that condensates in microtubules in one neuron can link with other neurons via gap junctions[6]. In addition to the synaptic connections between brain cells, gap junctions are a different category of connections, where the gap between the cells is sufficiently small for quantum objects to cross it by means of a process known as quantum tunnelling. Hameroff proposes that this tunnelling allows a quantum object, such as the Bose-Einstein condensates mentioned above, to cross into other neurons, and thus extend across a large area of the brain as a single quantum object.
He further postulates that the action of this large-scale quantum feature is the source of the gamma (40 Hz) synchronisation observed in the brain, and sometimes viewed as a correlate of consciousness [7]. In support of the much more limited theory that gap junctions are related to the gamma oscillation, Hameroff quotes a number of studies from recent year.
From the point of view of consciousness theory, an essential feature of Penrose’s objective reduction is that the choice of states when objective reduction occurs is selected neither randomly, as are choices following measurement or decoherence, nor completely algorithmically. Rather, states are proposed to be selected by a ‘non-computable’ influence embedded in the fundamental level of spacetime geometry at the Planck scale.
Penrose claimed that such information is Platonic, representing pure mathematical truth, aesthetic and ethical values. More than two thousand years ago, the Greek philosopher Plato had proposed such pure values and forms, but in an abstract realm. Penrose placed the Platonic realm at the Planck scale. This relates to Penrose’s ideas concerning the three worlds: physical, mental, and the Platonic mathematical world. In his theory, the physical world can be seen as the external reality, the mental world as information processing in the brain and the Platonic world as the encryption, measurement, or geometry of fundamental spacetime that is claimed to support non-computational understanding.

To me it seems that Orch OR theory is more suitable for forming platonic representations of objects – that is invariant/ideal perception of an object. This I would relate to the Perceptual aspect of A-consciousness.

2. Electromagnetic theories of consciousness

The electromagnetic field theory of consciousness is a theory that says the electromagnetic field generated by the brain (measurable by ECoG) is the actual carrier of conscious experience.
The starting point for these theories is the fact that every time a neuron fires to generate an action potential and a postsynaptic potential in the next neuron down the line, it also generates a disturbance to the surrounding electromagnetic (EM) field. Information coded in neuron firing patterns is therefore reflected into the brain’s EM field. Locating consciousness in the brain’s EM field, rather than the neurons, has the advantage of neatly accounting for how information located in millions of neurons scattered throughout the brain can be unified into a single conscious experience (sometimes called the binding problem): the information is unified in the EM field. In this way EM field consciousness can be considered to be ‘joined-up information’.
However their generation by synchronous firing is not the only important characteristic of conscious electromagnetic fields — in Pockett’s original theory, spatial pattern is the defining feature of a conscious (as opposed to a non-conscious) field.
In McFadden’s cemi field theory, the brain’s global EM field modifies the electric charges across neural membranes and thereby influences the probability that particular neurons will fire, providing a feed-back loop that drives free will.

To me, the EM filed theories seem to be right on track regarding the fact that the EM filed itself may modify / affect the probabilities of firing of individual neurons and thus lead to free will or sense of agency by in some sense causing some neurons to fire over others. I believe we can model the agency aspect of A-consciousness and find neural substrates of the same in brain, using this approach.

3. Holonomic brain theory:

The holonomic brain theory, originated by psychologist Karl Pribram and initially developed in collaboration with physicist David Bohm, is a model for human cognition that is drastically different from conventionally accepted ideas: Pribram and Bohm posit a model of cognitive function as being guided by a matrix of neurological wave interference patterns situated temporally between holographic Gestalt perception and discrete, affective, quantum vectors derived from reward anticipation potentials.
Pribram was originally struck by the similarity of the hologram idea and Bohm’s idea of the implicate order in physics, and contacted him for collaboration. In particular, the fact that information about an image point is distributed throughout the hologram, such that each piece of the hologram contains some information about the entire image, seemed suggestive to Pribram about how the brain could encode memories.
According to Pribram, the tuning of wave frequency in cells of the primary visual cortex plays a role in visual imaging, while such tuning in the auditory system has been well established for decades[citation needed]. Pribram and colleagues also assert that similar tuning occurs in the somatosensory cortex.
Pribram distinguishes between propagative nerve impulses on the one hand, and slow potentials (hyperpolarizations, steep polarizations) that are essentially static. At this temporal interface, he indicates, the wave interferences form holographic patterns.

To me, the holnomic approach seems to be the phenomenon lying between gestalt perception and quantum vectors derived from reward-anticipation potentials or in simple English between the perception and agency components of A-consciousness. this is the Memory aspect of A-consciousness. The use of hologram used to store information as a model, the use of slow waves that are tuned to carry information, the use of this model to explain memory formation (including hyperpolarization etc) all point to the fact that this approach will be most successful in explaining the autobiographical memory that is assited wuith A-cosnciousness.

4. Quantum Mind:

The quantum mind hypothesis proposes that classical mechanics cannot fully explain consciousness and suggests that quantum mechanical phenomena such as quantum entanglement and superposition may play an important part in the brain’s function and could form the basis of an explanation of consciousness.
Recent papers by physicist, Gustav Bernroider, have indicated that he thinks that Bohm’s implicate-explicate structure can account for the relationship between neural processes and consciousness[7]. In a paper published in 2005 Bernroider elaborated his proposals for the physical basis of this process[8]. The main thrust of his paper was the argument that quantum coherence may be sustained in ion channels for long enough to be relevant for neural processes and the channels could be entangled with surrounding lipids and proteins and with other channels in the same membrane. Ion channels regulate the electrical potential across the axon membrane and thus play a central role in the brain’s information processing.
Bernroider uses this recently revealed structure to speculate about the possibility of quantum coherence in the ion channels. Bernroider and co-author Sisir Roy’s calculations suggested to them that the behaviour of the ions in the K channel could only be understood at the quantum level. Taking this as their starting point, they then ask whether the structure of the ion channel can be related to logic states. Further calculations lead them to suggest that the K+ ions and the oxygen atoms of the binding pockets are two quantum-entangled sub-systems, which they then equate to a quantum computational mapping. The ions that are destined to be expelled from the channel are proposed to encode information about the state of the oxygen atoms. It is further proposed the separate ion channels could be quantum entangled with one another.

To me, the quantum entanglement (or bond between different phenomenons)and the encoding of information about the state of the system in that entanglement seems all too similar to feelings as information about the emotional/bodily state. Thus, I propose that these quantum entanglements in these ion-channels may be the substrate that give rise to access to the state of the system, thus giving rise to feelings that is the feeling component of A-consciousness i.e access to one’s own emotional states.

5. Space-time theories of consciousness:

Space-time theories of consciousness have been advanced by Arthur Eddington, John Smythies and other scientists. The concept was also mentioned by Hermann Weyl who wrote that reality is a “…four-dimensional continuum which is neither ‘time’ nor ‘space’. Only the consciousness that passes on in one portion of this world experiences the detached piece which comes to meet it and passes behind it, as history, that is, as a process that is going forward in time and takes place in space”.
In 1953, CD Broad, in common with most authors in this field, proposed that there are two types of time, imaginary time measured in imaginary units (i) and real time measured on the real plane.
It can be seen that for any separation in 3D space there is a time at which the separation in 4D spacetime is zero. Similarly, if another coordinate axis is introduced called ‘real time’ that changes with imaginary time then historical events can also be no distance from a point. The combination of these result in the possibility of brain activity being at a point as well as being distributed in 3D space and time. This might allow the conscious individual to observe things, including whole movements, as if viewing them from a point.
Alex Green has developed an empirical theory of phenomenal consciousness that proposes that conscious experience can be described as a five-dimensional manifold. As in Broad’s hypothesis, space-time can contain vectors of zero length between two points in space and time because of an imaginary time coordinate. A 3D volume of brain activity over a short period of time would have the time extended geometric form of a conscious observation in 5D. Green considers imaginary time to be incompatible with the modern physical description of the world, and proposes that the imaginary time coordinate is a property of the observer and unobserved things (things governed by quantum mechanics), whereas the real time of general relativity is a property of observed things.
These space-time theories of consciousness are highly speculative but have features that their proponents consider attractive: every individual would be unique because they are a space-time path rather than an instantaneous object (i.e., the theories are non-fungible), and also because consciousness is a material thing so direct supervenience would apply. The possibility that conscious experience occupies a short period of time (the specious present) would mean that it can include movements and short words; these would not seem to be possible in a presentist interpretation of experience.
Theories of this type are also suggested by cosmology. The Wheeler-De Witt equation describes the quantum wave function of the universe (or more correctly, the multiverse).

To me, the space-time theories of consciousness that lead to observation/consciousness from a point in the 4d/5d space-time continuum seem to mirror the identity formation function of stage 5.This I relate to evaluation /deliberation aspect of A-consciousness.

6. Simulated Reality
 

In theoretical physics, digital physics holds the basic premise that the entire history of our universe is computable in some sense. The hypothesis was pioneered in Konrad Zuse’s book Rechnender Raum (translated by MIT into English as Calculating Space, 1970), which focuses on cellular automata. Juergen Schmidhuber suggested that the universe could be a Turing machine, because there is a very short program that outputs all possible programmes in an asymptotically optimal way. Other proponents include Edward Fredkin, Stephen Wolfram, and Nobel laureate Gerard ‘t Hooft. They hold that the apparently probabilistic nature of quantum physics is not incompatible with the notion of computability. A quantum version of digital physics has recently been proposed by Seth Lloyd. None of these suggestions has been developed into a workable physical theory.
It can be argued that the use of continua in physics constitutes a possible argument against the simulation of a physical universe. Removing the real numbers and uncountable infinities from physics would counter some of the objections noted above, and at least make computer simulation a possibility. However, digital physics must overcome these objections. For instance, cellular automata would appear to be a poor model for the non-locality of quantum mechanics.

To me the simulation argument is one model of us and the world- i.e we are living in a dream state/ simulation/ digital world where everything is synthetic/ predictable and computable. The alternative view of world as real, analog, continuous world where everything is creative / unpredictable and non-computable. One can , and should have both the models in mind – a simulated reality that is the world and a simulator that is oneself. Jagat mithya, brahma sach. World (simulation) is false, Brahma (creation) is true . Ability to see the world as both a fiction and a reality at the same time, as a fore laid stage and as a creative jazz at the same time leads to this sixth stage of consciousness the A-consciousness of an emergent conscious self that is distinct from mere body/brain. One can see oneself and others as actors acting as per their roles on the world’s stage; or as agents co-creating the reality.

That should be enough for today, but I am sure my astute readers will take this a notch further and propose two more theoretical approaches to consciousness and perhaps look for their neural substrates basde on teh remianing tow stages and componenets of A-consciousness..

Major conscious and unconscious processes in the brain: part 4: the easy problem of A-consciousness

This is the part 4 of the multipart series on conscious and unconscious processes in the brain.

I’ll like to start with a quote from the Mundaka Upanishads:

Two birds, inseparable friends, cling to the same tree. One of them eats the sweet fruit, the other looks on without eating.


On the same tree man sits grieving, immersed, bewildered, by his own impotence. But when he sees the other lord contented and knows his glory, then his grief passes away.

Today I plan to delineate the major conscious processes in the brain, without bothering with their neural correlates or how they are related to unconscious processes that I have delineated earlier. Also I’ll be restricting the discussion mostly to the easy problem of Access or A- consciousness.  leaving the hard problem of phenomenal or P-consciousness for later.

I’ll first like to quote a definition of consciousness form Baars:

The contents of consciousness include the immediate perceptual world; inner speech and visual imagery; the fleeting present and its fading traces in immediate memory; bodily feelings like pleasure, pain, and excitement; surges of feeling; autobiographical events when they are remembered; clear and immediate intentions, expectations and actions; explicit beliefs about oneself and the world; and concepts that are abstract but focal. In spite of decades of behaviouristic avoidance, few would quarrel with this list today.

Next I would like to list the subsystems identified by Charles T tart that are involved in consciousness:

  • EXTEROCEPTION (sensing the external world)
  • INTEROCEPTION (sensing the body)
  • INPUT-PROCESSING (seeing meaningful stimuli)
  • EMOTIONS
  • MEMORY
  • SPACE/TIME SENSE
  • SENSE OF IDENTITY
  • EVALUATION AND DECISION -MAKING
  • MOTOR OUTPUT
  • SUBCONSCIOUS

With this background, let me delineate the major conscious processes/ systems that make up the A-consciousness as per me:-

  1. Perceptual system: Once the spotlight of attention is available, it can be used to bring into focus the unconscious input representations that the brain is creating.  Thus a system may evolve that has access to information regarding the sensations that are being processed or in other words that perceives and is conscious of what is being sensed. To perceive is to have access to ones sensations.  In Tarts model , it is the input-processing module  that ‘sees’ meaningful stimuli and ignores the rest / hides them from second-order representation. This is Baars immediate perceptual world.
  2. Agency system: The spotlight of attention can also bring into foreground the unconscious urges that propel movement. This access to information regarding how and why we move gives rise to the emergence of A-consciousness of will/ volition/agency. To will is to have access to ones action-causes. In tarts model , it is the motor output module that enables sense of voluntary movement. In Baars definition it is clear and immediate intentions, expectations and actions.
  3. Memory system:  The spotlight of attention may also bring into focus past learning. This access to information regarding past unconscious learning gives rise to A-consciousness of remembering/ recognizing. To remember is to have access to past learning. The Tart subsystem for the same is Memory and Baars definition is autobiographical events when they are remembered. 
  4. Feeling (emotional/ mood) system: The spotlight of attention may also highlight the emotional state of the organism. An information about one’s own emotional state gives rise to the A-consciousness of feelings that have an emotional tone/ mood associated. To feel is to have access to ones emotional state. The emotions system of Tart and Baars bodily feelings like pleasure, pain, and excitement; surges of feeling relate to this.
  5. Deliberation/ reasoning/thought system: The spotlight of attention may also highlight the decisional and evaluative unconscious processes that the organism indulges in. An information about which values guided decision can lead to a reasoning module that justifies the decisions and an A-consciousness of introspection. To think is to have access to ones own deliberation and evaluative process. Tarts evaluative and decision making module is for the same. Baars definition may be enhanced to include intorspection i.e access to thoughts and thinking (remember Descartes dictum of I think therefore I am. ) as part of consciousness.
  6. Modeling system that can differentiate and perceive dualism: The spotlight of attention may highlight the dual properties of the world (deterministic and chaotic ). An information regarding the fact that two contradictory models of the world can both be true at the same time, leads to modeling of oneslf that is different from the world giving rise to the difference between ‘this’ and ‘that’ and giving rise to the sense of self. One models both the self and the world based on principles/ subsystems of extereocpetion and interoception and this give rise to A-consciousness of beliefs about the self and the world. To believe is to have access to one’s model of something. One has access to a self/ subjectivity different from world and defined by interoceptive senses ; and a world/ reality different from self defined by exterioceptive senses. The interocpetive and exteroceptive subsystems of  Tart and Baars  explicit beliefs about oneself and the world are relevant here. This system give rise to the concept of a subjective person or self.
  7. Language system that can report on subjective contents and propositions. The spotlight of awareness may  verbalize the unconscious communicative intents and propositions giving rise to access to inner speech and enabling overt language and reporting capabilities. To verbally report is to have access to the underlying narrative that one wants to communicate and that one is creating/confabulating. This narrative and story-telling capability should also in my view lead to the A-consciousness of the stream of consciousness. This would be implemented most probably by Tart’s unconscious and space/time sense modules and relates to Baars the fleeting present and its fading traces in immediate memory- a sense of an ongoing stream of consciousness. To have a stream of consciousness is to have access to one’s inner narrative.
  8. Awareness system that can bring into focal awareness the different conscious process that are seen as  coherent. : the spotlight of attention can also be turned upon itself- an information about what all processes make a coherent whole and are thus being attended and amplified gives rise to a sense of self-identity that is stable across time and  unified in space. To be aware is to have access to what one is attending or focusing on or is ‘conscious’ of. Tarts Sense of identity subsystem and Baars concepts that are abstract but focal relate to this. Once available the spotlight of awareness opens the floodgates of phenomenal or P-consciousness or experience in the here-and-now of qualia that are invariant and experiential in  nature. That ‘feeling of what it means to be’ of course is the subject matter for another day and another post!

Major conscious and unconcoscious processes in the brain: part 3: Robot minds

This article continues my series on major conscious and unconscious processes in the brain. In my last two posts I have talked about 8 major unconscious processes in the brain viz sensory, motor, learning , affective, cognitive (deliberative), modelling, communications and attentive systems. Today, I will not talk about brain in particular, but will approach the problem from a slightly different problem domain- that of modelling/implementing an artificial brain/ mind.

I am a computer scientist, so am vaguely aware of the varied approaches used to model/implement the brain. Many of these use computers , though not every approach assumes that the brain is a computer.

Before continuing I would briefly like to digress and link to one of my earlier posts regarding the different  traditions of psychological research in personality and how I think they fit an evolutionary stage model . That may serve as a background to the type of sweeping analysis and genralisation that I am going to do. To be fair it is also important to recall an Indian parable of how when asked to describe an elephant by a few blind man each described what he could lay his hands on and thus provided a partial and incorrect picture of the elephant. Some one who grabbed the tail, described it as snake-like and so forth.

With that in mind let us look at the major approaches to modelling/mplementing the brain/intelligence/mind. Also remember that I am most interested in unconscious brain processes till now and sincerely believe that all the unconscious processes can, and will be successfully implemented in machines.   I do not believe machines will become sentient (at least any time soon), but that question is for another day.

So, with due thanks to @wildcat2030, I came across this book today and could immediately see how the different major approaches to artificial robot brains are heavily influenced (and follow) the evolutionary first five stages and the first five unconscious processes in the brain.
The book in question is ‘Robot Brains: Circuits and Systems for Conscious Machines’ by Pentti O. Haikonen and although he is most interested in conscious machines I will restrict myself to intelligent but unconscious machines/robots.

The first chapter of the book (which has made to my reading list) is available at Wiley site in its entirety and I quote extensively from there:

Presently there are five main approaches to the modelling of cognition that could be used for the development of cognitive machines: the computational approach (artificial intelligence, AI), the artificial neural networks approach, the dynamical systems approach, the quantum approach and the cognitive approach. Neurobiological approaches exist, but these may be better suited for the eventual explanation of the workings of the biological brain.

The computational approach (also known as artificial intelligence, AI) towards thinking machines was initially worded by Turing (1950). A machine would be thinking if the results of the computation were indistinguishable from the results of human thinking. Later on Newell and Simon (1976) presented their Physical Symbol System Hypothesis, which maintained that general intelligent action can be achieved by a physical symbol system and that this system has all the necessary and sufficient means for this purpose. A physical symbol system was here the computer that operates with symbols (binary words) and attached rules that stipulate which symbols are to follow others. Newell and Simon believed that the computer would be able to reproduce human-like general intelligence, a feat that still remains to be seen. However, they realized that this hypothesis was only an empirical generalization and not a theorem that could be formally proven. Very little in the way of empirical proof for this hypothesis exists even today and in the 1970s the situation was not better. Therefore Newell and Simon pretended to see other kinds of proof that were in those days readily available. They proposed that the principal body of evidence for the symbol system hypothesis was negative evidence, namely the absence of specific competing hypotheses; how else could intelligent activity be accomplished by man or machine? However, the absence of evidence is by no means any evidence of absence. This kind of ‘proof by ignorance’ is too often available in large quantities, yet it is not a logically valid argument. Nevertheless, this issue has not yet been formally settled in one way or another. Today’s positive evidence is that it is possible to create world-class chess-playing programs and these can be called ‘artificial intelligence’. The negative evidence is that it appears to be next to impossible to create real general intelligence via preprogrammed commands and computations.

The original computational approach can be criticized for the lack of a cognitive foundation. Some recent approaches have tried to remedy this and consider systems that integrate the processes of perception, reaction, deliberation and reasoning (Franklin, 1995, 2003; Sloman, 2000). There is another argument against the computational view of the brain. It is known that the human brain is slow, yet it is possible to learn to play tennis and other activities that require instant responses. Computations take time. Tennis playing and the like would call for the fastest computers in existence. How could the slow brain manage this if it were to execute computations?

The artificial neural networks approach, also known as connectionism, had its beginnings in the early 1940s when McCulloch and Pitts (1943) proposed that the brain cells, neurons, could be modelled by a simple electronic circuit. This circuit would receive a number of signals, multiply their intensities by the so-called synaptic weight values and sum these modified values together. The circuit would give an output signal if the sum value exceeded a given threshold. It was realized that these artificial neurons could learn and execute basic logic operations if their synaptic weight values were adjusted properly. If these artificial neurons were realized as hardware circuits then no programs would be necessary and biologically plausible artificial replicas of the brain might be possible. Also, neural networks operate in parallel, doing many things simultaneously. Thus the overall operational speed could be fast even if the individual neurons were slow. However, problems with artificial neural learning led to complicated statistical learning algorithms, ones that could best be implemented as computer programs. Many of today’s artificial neural networks are statistical pattern recognition and classification circuits. Therefore they are rather removed from their original biologically inspired idea. Cognition is not mere classification and the human brain is hardly a computer that executes complicated synaptic weight-adjusting algorithms.

The human brain has some 10 to the power of 11 neurons and each neuron may have tens of thousands of synaptic inputs and input weights. Many artificial neural networks learn by tweaking the synaptic weight values against each other when thousands of training examples are presented. Where in the brain would reside the computing process that would execute synaptic weight adjusting algorithms? Where would these algorithms have come from? The evolutionary feasibility of these kinds of algorithms can be seriously doubted. Complicated algorithms do not evolve via trial and error either. Moreover, humans are able to learn with a few examples only, instead of having training sessions with thousands or hundreds of thousands of examples. It is obvious that the mainstream neural networks approach is not a very plausible candidate for machine cognition although the human brain is a neural network.

Dynamical systems were proposed as a model for cognition by Ashby (1952) already in the 1950s and have been developed further by contemporary researchers (for example Thelen and Smith, 1994; Gelder, 1998, 1999; Port, 2000; Wallace, 2005). According to this approach the brain is considered as a complex system with dynamical interactions with its environment. Gelder and Port (1995) define a dynamical system as a set of quantitative variables, which change simultaneously and interdependently over quantitative time in accordance with some set of equations. Obviously the brain is indeed a large system of neuron activity variables that change over time. Accordingly the brain can be modelled as a dynamical system if the neuron activity can be quantified and if a suitable set of, say, differential equations can be formulated. The dynamical hypothesis sees the brain as comparable to analog feedback control systems with continuous parameter values. No inner representations are assumed or even accepted. However, the dynamical systems approach seems to have problems in explaining phenomena like ‘inner speech’. A would-be designer of an artificial brain would find it difficult to see what kind of system dynamics would be necessary for a specific linguistically expressed thought. The dynamical systems approach has been criticized, for instance by Eliasmith (1996, 1997), who argues that the low dimensional systems of differential equations, which must rely on collective parameters, do not model cognition easily and the dynamicists have a difficult time keeping arbitrariness from permeating their models. Eliasmith laments that there seems to be no clear ways of justifying parameter settings, choosing equations, interpreting data or creating system boundaries. Furthermore, the collective parameter models make the interpretation of the dynamic system’s behaviour difficult, as it is not easy to see or determine the meaning of any particular parameter in the model. Obviously these issues would translate into engineering problems for a designer of dynamical systems.

The quantum approach maintains that the brain is ultimately governed by quantum processes, which execute nonalgorithmic computations or act as a mediator between the brain and an assumed more-or-less immaterial ‘self’ or even ‘conscious energy field’ (for example Herbert, 1993; Hameroff, 1994; Penrose, 1989; Eccles, 1994). The quantum approach is supposed to solve problems like the apparently nonalgorithmic nature of thought, free will, the coherence of conscious experience, telepathy, telekinesis, the immortality of the soul and others. From an engineering point of view even the most practical propositions of the quantum approach are presently highly impractical in terms of actual implementation. Then there are some proposals that are hardly distinguishable from wishful fabrications of fairy tales. Here the quantum approach is not pursued.

The cognitive approach maintains that conscious machines can be built because one example already exists, namely the human brain. Therefore a cognitive machine should emulate the cognitive processes of the brain and mind, instead of merely trying to reproduce the results of the thinking processes. Accordingly the results of neurosciences and cognitive psychology should be evaluated and implemented in the design if deemed essential. However, this approach does not necessarily involve the simulation or emulation of the biological neuron as such, instead, what is to be produced is the abstracted information processing function of the neuron.

A cognitive machine would be an embodied physical entity that would interact with the environment. Cognitive robots would be obvious applications of machine cognition and there have been some early attempts towards that direction. Holland seeks to provide robots with some kind of consciousness via internal models (Holland and Goodman, 2003; Holland, 2004). Kawamura has been developing a cognitive robot with a sense of self (Kawamura, 2005; Kawamura et al., 2005). There are also others. Grand presents an experimentalist’s approach towards cognitive robots in his book (Grand, 2003).

A cognitive machine would be a complete system with processes like perception, attention, inner speech, imagination, emotions as well as pain and pleasure. Various technical approaches can be envisioned, namely indirect ones with programs, hybrid systems that combine programs and neural networks, and direct ones that are based on dedicated neural cognitive architectures. The operation of these dedicated neural cognitive architectures would combine neural, symbolic and dynamic elements.

However, the neural elements here would not be those of the traditional neural networks; no statistical learning with thousands of examples would be implied, no backpropagation or other weight-adjusting algorithms are used. Instead the networks would be associative in a way that allows the symbolic use of the neural signal arrays (vectors). The ‘symbolic’ here does not refer to the meaning-free symbol manipulation system of AI; instead it refers to the human way of using symbols with meanings. It is assumed that these cognitive machines would eventually be conscious, or at least they would reproduce most of the folk psychology hallmarks of consciousness (Haikonen, 2003a, 2005a). The engineering aspects of the direct cognitive approach are pursued in this book.

Now to me these computational approaches are all unidimensional-

  1. The computational approach is suited for symbol-manipulation and information-represntation and might give good results when used in systems that have mostly ‘sensory’ features like forming a mental represntation of external world, a chess game etc. Here something (stimuli from world) is represented as something else (an internal symbolic represntation).
  2. The Dynamical Systems approach is guided by interactions with the environment and the principles of feedback control systems and also is prone to ‘arbitrariness’ or ‘randomness’. It is perfectly suited to implement the ‘motor system‘ of brain as one of the common features is apparent unpredictability (volition) despite being deterministic (chaos theory) .
  3. The Neural networks or connectionsim is well suited for implementing the ‘learning system’ of the brain and we can very well see that the best neural network based systems are those that can categorize and classify things just like ‘the learning system’ of the brain does.
  4. The quantum approach to brain, I haven’t studied enough to comment on, but the action-tendencies of ‘affective system’ seem all too similar to the superimposed,simultaneous states that exits in a wave function before it is collapsed. Being in an affective state just means having a set of many possible related and relevant actions simultaneously activated and then perhaps one of that decided upon somehow and actualized. I’m sure that if we could ever model emotion in machine sit would have to use quantum principles of wave functions, entanglemnets etc.
  5. The cognitive approach, again I haven’t go a hang of yet, but it seems that the proposal is to build some design into the machine that is based on actual brain and mind implemntations. Embodiment seems important and so does emulating the information processing functions of neurons. I would stick my neck out and predict that whatever this cognitive approach is it should be best able to model the reasoning and evaluative and decision-making functions of the brain. I am reminded of the computational modelling methods, used to functionally decompose a cognitive process, and are used in cognitive science (whether symbolic or subsymbolic modelling) which again aid in decision making / reasoning (see wikipedia entry)

Overall, I would say there is room for further improvement in the way we build more intelligent machines. They could be made such that they have two models of world – one deterministic , another chaotic and use the two models simulatenously (sixth stage of modelling); then they could communicate with other machines and thus learn language (some simulation methods for language abilities do involve agents communicating with each other using arbitrary tokens and later a language developing) (seventh stage) and then they could be implemented such that they have a spotlight of attention (eighth stage) whereby some coherent systems are amplified and others suppressed. Of course all this is easier said than done, we will need at least three more major approaches to modelling and implementing brain/intelligence before we can model every major unconscious process in the brain. To model consciousness and program sentience is an uphill task from there and would definitely require a leap in our understandings/ capabilities.

Do tell me if you find the above reasonable and do believe that these major approaches to artificial brain implementation are guided and constrained by the major unconscious processes in the brain and that we can learn much about brain from the study of these artificial approaches and vice versa.

Major conscious and unconcoscious processes in the brain: part 2

This is the second in the series about major conscious and unconscious processes in the brain.  The first part can be found here. This post  tries to document a few more processes / functions in the brain and their neural substrates.
To recap, the major processes  in brain (along with sample broad brain regions (grossly simplified) associated) are :

  1. Sensory (occipital)
  2. Motor (parietal)
  3. Learning (hippocampal formation in medial temporal)
  4. Affective (amygdalar and limbic system)
  5. Evaluative/decisional (frontal)
These are supplanted by the following processes and mechanisms.
6. Modeling system/ Hemispheric laterlaization: Another system/ mechanism that the brain may find useful and develop is the ability to model the world and model the self and others . This presents the following problem. The world consist of objects that follow deterministic casual laws thus lending order to it as well as seeming agents that act by their own volition and thus leading to chaos. The modeling required to model causal, deterministic world may suffer from different design constraints than that required to model a chaotic, agentic world.  The brain, I propose, solves this, by having two hemispheres, one specialized for interacting with the world based on the model of the world as orderly, deterministic , statistically regular world; while the other hemisphere specialized for interacting with the world assuming it as a chaotic , agentic, probabilistically undetermined world. The two hemispheres co-operate with each other and respond using the advantages offered by the different strategies of both hemispheres. To recap, left hemisphere is specialized for causal patterns, sequences, analysis and interpretation, classifying objects (categorical spatial represnetation) , verbal abilities depending on analysis of sequences, uses prototypes (statistical mean) and uses Match strategy of responding in a statistical pattern, Music lyrics, and works on local stimuli (components) and parses high spatial frequency and values relativity. The right brain on the other hand is specialized for random/unperdicatble associations, scenes, synthesis and documentation, acting on objects (co-ordinate spatial representation), Spatial abilities depending on synthesis of objects making the scene, uses exemplars (actual events) and uses Maximizing strategy of responding as per probability at the moment, Music melody, and works on  global stimuli (wholes) and parses low spatial frequency and values absoluteness. To summarize, left hemisphere is best suited to model temporal dimensions in an analytical and causal manner, while right hemisphere is best suited to model the spatial dimensions in an holistic and agentic manner. This modeling, it needs to be emphasized, need not be  conscious, but could be entirely unconscious and have unconscious effects. 

7. Communciation system/ perisylvian area/ mirror neurons?: Once an organism has discovered/ realized unconsciously that there are other agents/ con specifics in the world , a brain system that communicates (on an unconscious level) with the others can evolve. A system can evolve that signals the emotional/internal state to others and can also sense the emotional/ internal state of others. This can be used as an aid to predict how the agent will act – as the agent is similar to oneself, one can predict how the other will act based on its internal state by simulating how one would act himself , given the same internal state. Sensing the internal state of others is one side of the coin, the other part is signalling your own internal state honestly to others to aid communication and enhance fitness by group selection. Remember that none of these consdireations need to be conscious. Even unicellular bacteria that live in colonies/ cultures evolve communication systems based on sensing and emitting chemicals etc.  In humans the mirror neuron system activated by others actions, the emotional expression and contagious unconscious empathy may all be the unconscious communciation system driven by non-verbal communication based on mirroring and mirror neurons.

8. Attention system : The last (for now!) system to evolve might be related to directing attention or selectivity processing relevant inputs, actions, affects, evaluations, associations, models and communciations while suppressing irrelevant ones. At any time , one is bombarded by many (all unconscious ) different stimuli, urges, activated associations, body states, values, models and communications from con specifics- these may or may not be relevant to current situation/ goal.  Not everything can be processed equally as the brain has limited computational resources. This leads to a mechanism/system to gauze relevance and thus bias the other systems by selectively processing some aspects in detail while ignoring others. This attentional/orientational mechanism may be covert, may be unconscious and might be triggered by external events/ voluntarily directed; important thing to realize is that  attention seems to integrate the output and inputs of other brain systems/ mechanisms  by selectivity highlighting a few features that are relevant and coherent. This also ultimately leads to  opening the doors to the next higher level of processing by brain – the conscious processing, which is computationally more demanding and thus requires attention to restrict the inputs that it can process. The attentional system opens the floodgates of heaven (consciousness) for the humans/ animals that are able to use it appropriately.

The spotlight of attention once created leads to conscious experiences of perception, agency, memory, feelings, thoughts, self-awareness, inner speech and identity. That of course is material for another post!

Major conscious and unconcoscious processes in the brain

Today I plan to touch upon the topic of consciousness (from which many bloggers shy) and more broadly try to delineate what I believe are the important different conscious and unconscious processes in the brain. I will be heavily using my evolutionary stages model for this.

To clarify myself at the very start , I do not believe in a purely reactive nature of organisms; I believe that apart from reacting to stimuli/world; they also act , on their own, and are thus agents. To elaborate, I believe that neuronal groups and circuits may fire on their own and thus lead to behavior/ action. I do not claim that this firing is under voluntary/ volitional control- it may be random- the important point to note is that there is spontaneous motion.

  1. Sensory system: So to start with I propose that the first function/process the brain needs to develop is to sense its surroundings. This is to avoid predators/ harm in general. this sensory function of brain/sense organs may be unconscious and need not become conscious- as long as an animal can sense danger, even though it may not be aware of the danger, it can take appropriate action – a simple ‘action’ being changing its color to merge with background. 
  2. Motor system:The second function/ process that the brain needs to develop is to have a system that enables motion/movement. This is primarily to explore its environment for food /nutrients. Preys are not going to walk in to your mouth; you have to move around and locate them. Again , this movement need not be volitional/conscious – as long as the animal moves randomly and sporadically to explore new environments, it can ‘see’ new things and eat a few. Again this ‘seeing’ may be as simple as sensing the chemical gradient in a new environmental.
  3. Learning system: The third function/process that the brain needs to develop is to have a system that enables learning. It is not enough to sense the environmental here-and-now. One needs to learn the contingencies in the world and remember that both in space and time. I am inclined to believe that this is primarily pavlovaion conditioning and associative learning, though I don’t rule out operant learning. Again this learning need not be conscious- one need not explicitly refer to a memory to utilize it- unconscious learning and memory of events can suffice and can drive interactions. I also believe that need for this function is primarily driven by the fact that one interacts with similar environments/con specifics/ predators/ preys and it helps to remember which environmental conditions/operant actions lead to what outcomes. This learning could be as simple as stimuli A predict stimuli B and/or that action C predicts reward D .
  4. Affective/ Action tendencies system .The fourth function I propose that the brain needs to develop is a system to control its motor system/ behavior by making it more in sync with its internal state. This I propose is done by a group of neurons monitoring the activity of other neurons/visceral organs and thus becoming aware (in a non-conscious sense)of the global state of the organism and of the probability that a particular neuronal group will fire in future and by thus becoming aware of the global state of the organism , by their outputs they may be able to enable one group to fire while inhibiting other groups from firing. To clarify by way of example, some neuronal groups may be responsible for movement. Another neuronal group may be receiving inputs from these as well as say input from gut that says that no movement has happened for a time and that the organism has also not eaten for a time and thus is in a ‘hungry’ state. This may prompt these neurons to fire in such a way that they send excitatory outputs to the movement related neurons and thus biasing them towards firing and thus increasing the probability that a motion will take place and perhaps the organism by indulging in exploratory behavior may be able to satisfy hunger. Of course they will inhibit other neuronal groups from firing and will themselves stop firing when appropriate motion takes place/ a prey is eaten. Again nothing of this has to be conscious- the state of the organism (like hunger) can be discerned unconsciously and the action-tendencies biasing foraging behavior also activated unconsciously- as long as the organism prefers certain behaviors over others depending on its internal state , everything works perfectly. I propose that (unconscious) affective (emotional) state and systems have emerged to fulfill exactly this need of being able to differentially activate different action-tendencies suited to the needs of the organism. I also stick my neck out and claim that the activation of a particular emotion/affective system biases our sensing also. If the organism is hungry, the food tastes (is unconsciously more vivid) better and vice versa. thus affects not only are action-tendencies , but are also, to an extent, sensing-tendencies.
  5. Decisional/evaluative system: the last function (for now- remember I adhere to eight stage theories- and we have just seen five brain processes in increasing hierarchy) that the brain needs to have is a system to decide / evaluate. Learning lets us predict our world as well as the consequences of our actions. Affective systems provide us some control over our behavior and over our environment- but are automatically activated by the state we are in. Something needs to make these come together such that the competition between actions triggered due to the state we are in (affective action-tendencies) and the actions that may be beneficial given the learning associated with the current stimuli/ state of the world are resolved satisfactorily. One has to balance the action and reaction ratio and the subjective versus objective interpretation/ sensation of environment. The decisional/evaluative system , I propose, does this by associating values with different external event outcomes and different internal state outcomes and by resolving the trade off between the two. This again need not be conscious- given a stimuli predicting a predator in vicinity, and the internal state of the organism as hungry, the organism may have attached more value to ‘avoid being eaten’ than to ‘finding prey’ and thus may not move, but camouflage. On the other hand , if the organisms value system is such that it prefers a hero’s death on battlefield , rather than starvation, it may move (in search of food) – again this could exist in the simplest of unicellular organisms.

Of course all of these brain processes could (and in humans indeed do) have their conscious counterparts like Perception, Volition,episodic Memory, Feelings and Deliberation/thought. That is a different story for a new blog post!

And of course one can also conceive the above in pure reductionist form as a chain below:

sense–>recognize & learn–>evaluate options and decide–>emote and activate action tendencies->execute and move.

and then one can also say that movement leads to new sensation and the above is not a chain , but a part of cycle; all that is valid, but I would sincerely request my readers to consider the possibility of spontaneous and self-driven behavior as separate from reactive motor behavior. 

Russsinas have a richer discriminative experience of light and dark blue qualia

I have blogged extensively earlier regarding language, color and the sapir -whorf hypothesis. My position in the above is clear, I lean towards the sapir-whorf hypothesis and a mild form of linguistic determinism. Now a new study (which I had missed earlier) by Lera Boroditsky presents further corroborating evidence that language influences even such basic functions as color perception. As per their 2007 PNAS paper, Russians are better (more speedily) able to distinguish between the light blue and dark blue color in an objective color perception task, thanks to the fact that Russian has a different color term for dark blue and a different one for the light blue. It is an excellent paper and I present some excerpts from the introduction:

Different languages divide color space differently. For example,the English term ‘‘blue’’ can be used to describe all of the colors in Fig. 1. Unlike English, Russian makes an obligatory distinction between lighter blues (‘‘goluboy’’) and darker blues (‘‘siniy’’). Like other basic color words, ‘‘siniy’’ and ‘‘goluboy’’ tend to be learned early by Russian children (1) and share many of the usage and behavioral properties of other basic color words (2). There is no single generic word for ‘‘blue’’ in Russian that can be used to describe all of the colors in Fig. 1 (nor to adequately translate the title of this work from English to Russian). Does this difference between languages lead to differences in how people discriminate colors?

The question of cross-linguistic differences in color perception has a long and venerable history (e.g., refs. 3–14) and has been a cornerstone issue in the debate on whether and how much language shapes thinking (15). Previous studies have found cross-linguistic differences in subjective color similarity judgments and color confusability in memory (4, 5, 10, 12, 16). For example, if two colors are called by the same name in a language, speakers of that language will judge the two colors to be more similar and will be more likely to confuse them in memory compared with people whose language assigns different names to the two colors. These cross-linguistic differences develop early in children, and their emergence has been shown to coincide with the acquisition of color terms (17). Further, cross-linguistic differences in similarity judgments and recognition memory can be disrupted by direct verbal interference (13, 18) or by indirectly preventing subjects from using their normal naming strategies (10), suggesting that linguistic representations are involved online in these kinds of color judgments.

Because previous cross-linguistic comparisons have relied on memory procedures or subjective judgments, the question of whether language affects objective color discrimination performance has remained. Studies testing only color memory leave open the possibility that, when subjects make perceptual discriminations among stimuli that can all be viewed at the same time, language may have no influence. In studies measuring subjective similarity, it is possible that any language-congruent bias results from a conscious, strategic decision on the part of the subject (19). Thus, such methods leave open the question of whether subjects’ normal ability to discriminate colors in an objective procedure is altered by language.

Here we measure color discrimination performance in two language groups in a simple, objective, perceptual task. Subjects were simultaneously shown three color squares arranged in a triad (see Fig. 1) and were asked to say which of the bottom two color squares was perceptually identical to the square on top.

This design combined the advantages of previous tasks in a way that allowed us to test for the effects of language on color perception in an objective task, with an implicit measure and minimal memory demands.

First, the task was objective in that subjects were asked to provide the correct answer to an unambiguous question, which they did with high accuracy. This feature of the design addressed the possibility that subjects rely only on linguistic representations when faced with an ambiguous task that requires a subjective judgment. If linguistic representations are only used to make subjective judgments in ambiguous tasks, then effects of language should not show up in an objective unambiguous task with a clear correct answer.

Second, all stimuli involved in a perceptual decision (in this case, the three color squares) were present on the screen simultaneously and remained in full view until the subjects responded. This allowed subjects to make their decisions in the presence of the perceptual stimulus and with minimal memory demands.

Finally, we used the implicit measure of reaction time, a subtle aspect of behavior that subjects do not generally modulate explicitly. Although subjects may decide to bias their decisions in choosing between two options in an ambiguous task, it is unlikely that they explicitly decide to take a little longer in responding in some trials than in others.

In summary, this design allowed us to test subjects’ discrimination performance of a simple, objective perceptual task. Further, by asking subjects to perform these perceptual discriminations with and without verbal interference, we are able to ask whether any cross-linguistic differences in color discrimination depend on the online involvement of language in the course of the task.

The questions asked here are as follows. Are there crosslinguistic differences in color discrimination even for simple, objective, perceptual discrimination tasks? If so, do these differences depend on the online involvement of language? Previous studies with English speakers have demonstrated that verbal interference changes English speakers’ performance in speeded color discrimination (21) and in visual searching (22, 23) across the English blue/green boundary. If a color boundary is present in one language but not another, will the two language groups differ in their perceptual discrimination performance across that boundary? Further, will verbal interference affect only the performance of the language group that makes this linguistic distinction?

They then go on to discuss their experimental setup (which I recommend you go and read). Finally they present their findings:

We found that Russian speakers were faster to discriminate two colors if they fell into different linguistic categories in Russian (one siniy and the other goluboy) than if the two colors were from the same category (both siniy or both goluboy). This category advantage was eliminated by a verbal, but not a spatial, dual task. Further, effects of language were most pronounced on more difficult, finer discriminations. English speakers tested on the identical stimuli did not show a category advantage under any condition. These results demonstrate that categories in language can affect performance of basic perceptual color discrimination tasks. Further, they show that the effect of language is online, because it is disrupted by verbal interference. Finally, they show that color discrimination performance differs across language groups as a function of what perceptual distinctions are habitually made in a particular language.

They end on a philosophical note:

The Whorfian question is often interpreted as a question of whether language affects nonlinguistic processes. Putting the question in this way presupposes that linguistic and nonlinguistic processes are highly dissociated in normal human cognition, such that many tasks are accomplished without the involvement of language. A different approach to the Whorfian question would be to ask the extent to which linguistic processes are normally involved when people engage in all kinds of seemingly nonlinguistic tasks (e.g., simple perceptual discriminations that can be accomplished in the absence of language). Our results suggest that linguistic representations normally meddle in even surprisingly simple objective perceptual decisions.

To me this is another important paper that puts sapir-whorf hypothesis on the forefront. I would love to hear from those who do not endorse the spair-whorf hypothesis as to what they make of these results?

hat tip: Neuroanthropology blog.