Tag Archives: creativity

The Four Sub-Types of ADHD

Recently, I wrote a post about the four neural sub-types of depression. That classification was based on resting stage fMRI comparing depressive patients with controls; I hope someone does similar studies for other psychiatric conditions.

English: Symptoms of ADHD described by the lit...

English: Symptoms of ADHD described by the literature (Photo credit: Wikipedia)

The current post is an attempt to delineate what may come out in such a study if done for ADHD. I will be focusing on ADHD as it manifests in children, adolescents as well as adults.

I will be mostly relying on factor analytical studies of ADHD that have typically revealed 3 to 4 underlying factors.

ADHD has typically been diagnosed by looking at symptoms from inattentive or hyperactive-impulsive domains. You can find the DSM-5 criteria here. And its sub-types are combined presentation, predominantly inattentive presentation and predominantly hyperactive-impulsive presentation.

As per some studies, a majority (as much as 90 %) of ADHD subjects have inattentive symptoms while a few have hyperactive-impulsive symptoms. This is analogous to the depression findings that predominately depressive patients have a core pathology marked by low mood ; and subtypes marked by say anergia, anhedonia and anxiety.

However, factor analytical studies have presented a more nuanced picture. As per this study [pdf] there are four underlying factors of ADHD.

  1. Inattentive/ cognitive problems
  2. Hyperactivity/restlessness
  3. Impulsivity/ emotional lability
  4. Problems with self-concept

The first there factors are well established and quite apparent. To impulsivity description I may just add sensation-seeking too. The problems with self concept is something like low self-confidence/ self esteem, possibly due to continued underachievement and problems at school/ work. I would like to add another dimension to this fourth problems with self concept factor – that of disruptive/ defiant behavior possibly due to self-concept issues.

And I am sure in future, in future, when brain basis and neutral subtypes are more easily available for ADHD, we will find these four subtypes.

Before we leave, its important to note that ADHD lies on a continuum and its a matter of degree than a matter of kind .

Also, ADHD confers benefits too like enhanced creativity and some work has shown that creativity can be mistaken for ADHD in kids.

The above four sub-types may then be classified by their positive poles too:

  1. Daydreaming/broadened attention
  2. High energy and enthusiasm
  3. risk-taking and emotional sensitivity
  4. independent and idiosyncratic

All the above are also traits associated with the creative person. ADHD & creativity are indeed very closely related and its time we stopped seeing differences like ADHD in purely pathological terms.

Manic Depressive Leaders in a Time of Crisis

S. Nassir Ghaemi, in his book, A First Rate Madness: Uncovering the links between  Leadership and Mental Illness, makes a case for the fact that while ‘normal’ leaders are good in times of stability and peace; in times of crisis, mentally ill or mentally abnormal people make for better leaders.

He does this via historical analysis of leaders like Gandhi, Martin Luther King jr, Franklin D. Roosevelt, Winston Churchill, Abraham Lincoln etc. Some of these leaders he classifies as being predominantly depressive, others as manic while the rest as being of bipolar proclivity. In the book he writes:

The depressed person is mired in the past; the manic person is obsessed with the future. Both destroy the present in the process.

He lists four traits that distinguish a manic/depressive leader from other normal leaders: Empathy, ResilienceCreativity and Realism! I can easily map these to the ABCD dimensions: empathy is an Affective trait (the ability to feel emotions), resilience is more about Behaviors (bouncing back from failures), creativity is related to Cognition (ability to think in a divergent manner) while realism can be linked to Desire/Dynamism (do we do realistic assessments).

He claims, and I find that claim very attractive and true, that depressive people typically are better at empathy and realism, that is, they have heightened empathy and realism as compared to the normal population; in a similar vein, manic people are typically better at creativity and resilience than the normal population.

If one views depression and mania  as somewhat opposed to each other. at least on on some dimensions, it goes without saying that depressive people may be less creative (they are typically stuck in ruts)/resilient (they often cant cope and sometime stake the extreme step of suicide); similarly, in a manic phase, people may be less realistic (may even become psychotic losing touch with reality)/ empathetic (may not be able to get inside the head of others).

While a depressive or manic phase may be debilitating, the relatively ‘normal’/symptom free period may confer advantages on depressives, manics or bipolars by making them leverage their resilience, creativity, realism and empathy, especially to tide over crisis.

Why should it be the case that in normal periods a ‘normal’ leader may help, but in a crisis only an ‘abnormal’ leader may be able to rise to the occasion? The answer lies in evolution and genetic diversity. Consider moths that are generally gray in color, but some are darker (closer to black) while some others lighter (white in color) . The majority gray moths are the ‘normal’ moths, while the minority black and white are abnormal ones. Now these moths are exquisitely adapted to their environments, and typically gray moths will flourish. However if the area has suddenly become polluted such that darker color moths are now less easier to detect than the gray moths by the predators, then dark moths will thrive at the cost of  light moths.

A similar analogy can be applied to humans. Normal leaders are adapted to stable conditions; while in times of crisis, more atypical brains may suffer greater advantage.

So next time you select a leader, be mindful of whether its a change/crisis situation or a stable situation; if a crisis/ change situation, you may do well to do some reverse discrimination and select a mentally ill/ abnormal person as a leader!!

Creativity components and other musings

The Mona Lisa.

The Mona Lisa. (Photo credit: Wikipedia)

The Mouse Trap readers will be glad to know that I have started writing a column over at The Creativity Post, titled ‘The muses and the furies’ where i will talk about creativity and the thin line dividing genius and madness.

My first post focuses on delineating the components of creativity. Here is an excerpt:

I propose that creativity is made of four factors:

1. The first factor is SURPRISE: whether one produces something that continues captivating attention, even though it becomes familiar over time. This may result from rare and remote association of ideas or a recombination process that brings familiar things together in an unfamiliar/unexpected way. This is the ability to think beyond conventional boundaries or categories, loosen up the associations and make remote associations between and within categories. This is also related to flexibility with which you can walk across categories and disciplines. An example might be Mona Lisa by Da Vinci or putting a urinal in an art gallery.

2. The second factor is ORIGINALITY: whether one produces something that is really unique and novel and unheard of before. This is creativity that is not just combinatorial but perhaps associated with transforming and transcending. As pre Pribram novelty is a result of new rearrangements of old ideas. If the first factor is about combination, this may be thought of as permutation or reordering. This is related to originality scores. An example might be cubism by Picasso where the face/familiar objects are rearranged, sort of.

3. The third factor is BEAUTY: whether one produces something that is appealing and aesthetically satisfying. Beauty lies in the eyes of beholder and is related to subjective preferences. Identifying beauty is a fast and frugal process and as per one conception, we find something beautiful, if we can process it easily (that is why average faces are more beautiful- ease of processing). This is related to fluency scores or the ease with which you can ideate. Expressionisms by Monet et al looks beautiful because it’s easy on eyes.

4. The fourth factor is of UTILITY: whether one produces something that is useful. As evident from the alternate uses task the utility of something is ambiguous and context dependent and yet measured objectively and not subjectively. Creativity is the ability to deal with this inherent ambiguity, be comfortable with it and look at things from multiple simultaneous perspectives to find useful contexts in which to use/ apply it. This is the ability to see if the solution actually solves the problem. Also the ability to elaborate an idea and add details to it, so as to make it useful/ relevant. Here, one can focus on one stream of thought/ idea and take it to logical conclusion, adding details and making it complex. The Miniature art of India, that has elaborate details, is an example of this form, and is useful in reconstructing history.

Read the full text here.

While we are talking about creativity, I recently engaged with Sam McNerney in a debate about whether a focus on small c creativity detracts from addressing  the really important questions of Genius. Again an excerpt follows:

While I agree with Sam, whole-heartedly, that big C creativity merits a concerted focus, I also believe that small c is the way we will inch closer to the enigma of genius. It’s true that myths about creativity — that it is easy, natural for some, mostly cognitive in nature — should be dispelled in favor of a more rounded account of genius that takes grit, positivity, endurance, effort and curiosity into account. It is equally true that we can only reveal the essence of the creative process — that it involves recombination to produce surprise element, or transformations to produce novelty element, that great works of art/creativity are selected for by arbitrary aesthetic preferences as well as utilitarian concerns — by focusing closely on the small, everyday c creativity and the processes underlying them.

Lest I be misunderstood, my objection to Sam is on two counts: one, that the perpetuating myth of anguished art and tormented genius is as counterproductive as any other myth. Most creators/ innovators are likely to have positive frames of mind that treat failures as learning opportunities; I’m not saying they don’t struggle or work hard, but they don’t, necessarily, see the struggle as painful, but rather see it as challenging and enriching.

Second, a focus on small c creativity is as necessary as a focus on Big C creativity — as that approach is more likely to yield early fruits and help in identification of mechanisms.

 

Read the full argument here.

Another debate in which I recently engaged was with Douglas Fields (his ‘The other Brain’ was earlier reviewed on the mouse trap) – in which I argued that academic success was multi-factorial and good grades and test scores are not an either/or proposition . Excerpt follows:

Thus I would suggest that all academic success, however they are measured, are dependent on four factors: innate ability or intelligence, self-control and hard work, grit and motivational resilience and finally, a positive, incremental mindset. While some academic outcomes, like achievement test results (e.g., SATs) may depend disproportionately on innate ability and mindset (test results and transfer of learning), other outcomes—like grades—may depend more on personality factors like self-control and grit/motivation.

Read the full text here.

 

Enhanced by Zemanta

Autism and ADHD: the intelligent and the creative child!

ResearchBlogging.org
A new study by Ruthsatz and Urbach is doing the rounds nowadays. That study has nothing to do with Autism or ADHD per se. The study focuses on child prodigies and finds that they have high levels of intelligence, enhanced working memory and that they pay attention to details.

What the study also found was high level of autistic relatives and high scores on Autism spectrum for the prodigies. The relation between autism and prodigiousness was mediated by the endo-phenotype ‘paying attention to detail’ and none of the other symptoms of ASD seemed to play a role.

Many savants also are high on ASD and have exception working as well as long term memory. There too they pay excessive attention to details and are fascinated by speical interests.

 

On the other hand there is gathering literature that suggests that the ADHD kid is basically on the creative side of the spectrum – restless, trying multiple strategies,  having diffused and peripheral attention, and to an extent novelty and sensation seeking.

Also, if one thinks about that for a minute, autism and ADHD seem to be opposed on a number of dimensions. The three basic features of ADHD are 1) inattentiveness and distractibility vs  too much focus and fascination for an object shown by Autistic kid 2) impulsiveness vs restricted and repetitive motions and interests of the autistic kid and finally 3) hyperactivity vs restrained interactions and communications of the autistic kid.

There is also some data from fly models that suggest that autism and ADHD are opposites in a sense.

I may even go ahead and stick my neck and say that while autism is primarily characterized by emotion of Interest/ fascination/ attention ; ADHD is characterized by emotion of Wonder/Awe/surprise.

One theory of autism suggests that the social and communicative difficulties arise as the child hides in a cocoon to prevent over-stimulation and sensory overload; a theory of ADHS says that the child is under-stimulated and needs stimulants like Ritalin to achieve baseline of activation and sensory stimulus.

Another popular theory of autism posits that it arises primarily due to ‘weak central coherence’, or inability to see the context/ gestalt/ ‘the big picture’. The ADHD kid on the other hand is hypothesized to use a lot of peripheral attention and daydreams missing what is being centrally taught in the classroom.

And that brings me to the root of the differences in my opinion; while the Autism spectrum is characterized by a local processing style, the ADHD-psychotic spectrum is characterized by a global  processing style.

Some clarifications are due here. I believe ADHD to fall on the psychotic spectrum and have been proposing the autism and psychosis as opposites on a continuum model for close to eternity.

Also, when I say global/local processing styles I dont restrict the application to perception alone, but extend it to include cognitive style too.

There is a lot of work that has been done on global/ local processing styles with respect to perception, using Navon letter tasks and it is fairly established that normally people lean towards the global processing style.

Forrester et al extend this to cover there GLOMOSYS system that posits two basic types of perceptual/cognitive style- global and local.

It is instructive to pause and note here that psychosis is associated with a global processing style while autism with attention to details.

It is also instructive to pause and note that similar to autism-psychosis continuum , it seems Intelligence and creativity are also in a sense opposed to each other. Also while creativity  is associated with broad cognitive style that is divergent; intelligence is conceived of as narrow and focused application of abilities.

That brings me to my final analogy: while autistic kids may have pockets of intelligence and savantism and may be driving the evolution of intelligence; it is the ADHD kids who are more likely to be creative and are driving the evolution of creativity.

The romantic notion that psychosis is the price for creativity may not be untrue.

Joanne Ruthsatz, & Jourdan B. Urbach (2012). Child prodigy: A novel cognitive profile places elevated general intelligence,
exceptional working memory and attention to detail at the root
of prodigiousness Intelligence DOI: 10.1016/j.intell.2012.06.002

Jens F¨orster, & Laura Dannenberg (2010). GLOMOsys: A Systems Account of Global Versus Local Processing Psychological Inquiry, DOI: 10.1080/1047840X.2010.487849

Enhanced by Zemanta

Cognitive control: when less is more!

ResearchBlogging.org

Yesterday I wrote a post about ADHD and creativity and how the frontal lobes hypo-function and dopamine may be the mediating factors involved.  Today I serendipitously came across this article by Thomson-Schill et al in which they posit that frontal cortex hypofunction during childhood is beneficial, on average, as it enables convention learning and thus linguistic acquisition.

What they basically mean is that frontal cortex has been found to be involved in cognitive control i.e. in higher cognitive functions like planning, flexible thinking etc ; and the frontal cortex does this by biasing the competitive responses elicited by a stimuli by goals /existing beliefs / other task related information that is maintained in the working memory. To take an example, cognitive control is often measured by tasks such as the stroop task. the strrop task measures how well you are able to suppress the prepotent response tendency of naming the color-term itself by the task-relevant constraint that you name the color of the term instead. when a color term like ‘green’ is presented in Red color, then the green as well as red linguistic response compete with each other. In the absence of frontal biasing in teh direction of color ie.e red, we are apt to name the color-term itself i.e green by default which is the habitual response. Children , who have less well-developed frontal cortices generally perform poorer at the stroop task than adults as their frontal cortex does not bias or tilt the scales in favor of the color used rather than the color-term presented.

The authors claim that this inability to bias results on the basis of pre-existing knowledge/beliefs leads to a greater ability to learn. They posit that learning conditions (that maximize competition )  are different from performance conditions (where one response needs to be selected or competition minimized) and the child’s brain is optimized for learning by not having frontal inhibition and control. An example they give is filtering noise form signal which the child are able to do, but adults can’t. for eg. if a new language has a phrase ‘et tu brute’ and 75 % of times it is in this form and 25% of times it is of the form ‘et tu vous Brute’, then adults will tend to probability match and select the utterance/ utter themselves phrase ‘et tu brute’ 75% of times and ‘et tu vous Brute’ 25 % of times. This is because when they want to utter the phrase their existing knowledge that sometimes the other phrase is also used, makes them sensitive to variations. In child’s brain on the other hand a competition between the two phrases takes place and as there is no moderating influence involved, the outcome hundred percent of the time is ‘et tu brute’. Thus, they are able to learn conventional meaning of a phrase/word etc more easily than an adult who gets bogged down by variations. Thus sometimes, less is more!

However the reason I got hooked to this study is the implications they draw for ADHD/Autism and creativity. I’ll quote them verbatim on the issue:

Central to our proposal is the claim that the timing of PFC development has been the target of selection and, therefore, that variations in timing are functionally meaningful. Recent neuroimaging studies have revealed potentially important differences in the timing of PFC development across typical and atypical individuals. Variations in the trajectory of PFC maturation (based on repeated measures of cortical thickness) have been associated with cognitive measures in typically developing children (Shaw et al., 2006). Children with attention-deficit hyperactivity disorder (ADHD) exhibit a delay in cortical maturation that is most prominent in the PFC (Shaw et al., 2007). In contrast, children with autism spectrum disorders (ASD) undergo early maturation of the PFC (Carper, Moses, Tigue, & Courchesne, 2002). A better understanding of the implications of these timing changes for both learning and performance may illuminate some of the behavioral and cognitive patterns associated with these diagnoses (e.g., impaired acquisition of social conventions in ASD), as well as offer a fertile ground for testing the validity of our hypothesis that typical PFC development involves a trade-off in favor of learning to the detriment of performance in infancy and early childhood.

This gels quite nicely with what I have been speculating for some time, that ADHD and Autism are opposed and that ADHD is childhood equivalent of psychosis. ADHD kids are bound to be good learners, more divergent creative and have better social and linguistic skills. Autistic kids on the other hand would be better performers (say child prodigies in memory etc) , more convergent thinkers, and have less social and linguistic skills- one mechanism of which may be lesser ability to learn social and linguistic conventions- like the usage of metaphorical terms.

On creativity this is what the authors say:

Creativity—the ability to approach an object or a situation from an alternative perspective—may benefit from the unsupervised competition that occurs in the absence of prefrontal control. Consider one common assessment of creative thinking, the Alternative Uses Task: When attempting to think of ways to use an object in some atypical way, adults struggle. In this case, an active PFC might, paradoxically, hinder flexible thinking, because the representation of the object is sculpted by prior experience and expectations. Interestingly, young children are immune to this kind of functional fixedness (German&Defeyter, 2000). Successful performance in similar tasks of ideational fluency has been associated with EEG changes in prefrontal regions (e.g., Mo¨lle, Marshall, Wolf, Fehm, & Born, 1999). Furthermore, patients with PFC damage solve insight-problemsolving tasks better than do their healthy counterparts (Reverberi, Toraldo, D’Agostini, & Skrap, 2005). This apparent flexibility of behavior can be interpreted as a stimulus-driven response: A mind that is at the mercy of its environment is not shaped by expectations or beliefs. This interpretation highlights a parallel between functional fixedness and probability matching, in that both of these ‘‘adult’’ phenomena involve biasing stimulus–response associations based on expectations. This proposal suggests new avenues of investigation into the processes that support creative thought and into putative relations between creativity and psychological disorders associated with hypometabolic prefrontal function (i.e., a state of lower energy consumption in the PFC, as in bipolar disorder, for example).

The above analysis of creativity in terms of hypofunction of frontal cortex bodes well for my theories of creativity-ADHD relationships as well as creativity-psychosis (bipolar etc) relationship, both of which involve developmental or functional hypofucnction of frontal cortex.

Thompson-Schill, S., Ramscar, M., & Chrysikou, E. (2009). Cognition Without Control: When a Little Frontal Lobe Goes a Long Way Current Directions in Psychological Science, 18 (5), 259-263 DOI: 10.1111/j.1467-8721.2009.01648.x

Enhanced by Zemanta

Autism and white Matter/Myelination: the opposite of creativty/psychosis phenotype?

ResearchBlogging.org

Tractographic reconstruction of neural connect...
Image via Wikipedia

A new paper by Ben Bashat et al extends their earlier findings that had found that there was accelerated maturation of white matter in children with Autism. In this new paper they use Tract Based Spatial statistics (TBSS) to determine the white matter integrity of children (age around 3 years) with Autism as compared to normal controls. Of course they used Diffusion tensor Imaging to find out Fractional anisotropy and other measures of white matter integrity.

Essentially they found that in some regions/tracts there was greater Fractional Anisotropy (FA) as compared to controls. These regions/tracts were genu and body of the corpus callosum (CC), left superior longitudinal fasciculus (SLF) and right and left cingulum (Cg). They also found that in areas of high FA there was corresponding decrease in Radial diffusivity (Dr). What this essentially means, to my naive mind, is that greater conductance or speed of action potential in axons would primarily be due to enhanced myelination which reduces leakage or lateral flow of AP.

I’ll like to contrast the results with an earlier study I had blogged about regarding creativity, psychopathology and white matter mylienation connection. As per that study an inverse relation was found between people high on creativity (divergent type) and Fractional anisotropy in frontal regions, i’e there was low FA. Also importantly there was increased Dr (radial diffusivity) in the same regions and thus the conclusion was that there was reduced myelination in those areas which meant reduced signal transmission speed and more signal leak . It is notable that that study too used DTI and Tract based Spatial statistics (TBSS) analysis method to arrive at their conclusions.

Regular readers of this blog will know my fanaticism for Autism and Psychosis as opposites on a continuum theory. This new paper nicely fits in with my last post linking creativity/psychosis and white matter/myelination, I had as much surmised that Autism would show the opposite effect and have high FA and decreased Dr. It is heartening to note when such a relation is found and reported- goes to show the strength and ability to make predictions of the theory.

However, I would also like to point out and highlight that I believe Autistic spectrum is characterized by another type of ability – the savantic intelligence– that may be directly due to this white matter /excess myelination effect. Perhaps the signals travel so fast that decisions are made locally without the time available to get other far-0off regions involved- thus giving attention to details but inability to link disparate regions and ideas.

Weinstein, M., Ben-Sira, L., Levy, Y., Zachor, D., Itzhak, E., Artzi, M., Tarrasch, R., Eksteine, P., Hendler, T., & Bashat, D. (2010). Abnormal white matter integrity in young children with autism Human Brain Mapping DOI: 10.1002/hbm.21042
Ben Bashat, D., Kronfeld-Duenias, V., Zachor, D., Ekstein, P., Hendler, T., Tarrasch, R., Even, A., Levy, Y., & Ben Sira, L. (2007). Accelerated maturation of white matter in young children with autism: A high b value DWI study NeuroImage, 37 (1), 40-47 DOI: 10.1016/j.neuroimage.2007.04.060
Jung, R., Grazioplene, R., Caprihan, A., Chavez, R., & Haier, R. (2010). White Matter Integrity, Creativity, and Psychopathology: Disentangling Constructs with Diffusion Tensor Imaging PLoS ONE, 5 (3) DOI: 10.1371/journal.pone.0009818

Reblog this post [with Zemanta]

More brains and bonkers connection: thinking out of a broken box

ResearchBlogging.org

Dopamine
Image via Wikipedia

We have covered many studies linking creativity with Psychosis and this new study by Manzano et al provides further corroborating evidence.

Dopamine has been linked with psychosis and is now also being increasingly being linked with creativity, especially divergent creativity and thinking style.

Divergent thinking is influenced by dopaminergic function. Reuter [6] found a correlation between divergent thinking (the Inventiveness battery of the Berliner Intelligenz Struktur Test) and polymorphisms of the dopamine D2 receptor gene–DRD2 TAQ IA. Higher creativity scores were observed in carriers of the A1 allele. This polymorphism is unrelated to general intelligence [7], [8], which suggests that it is more specifically related to Glr (“long-term storage and retrieval”). This finding is in line with functional imaging research showing the D2 system to be involved in attentional set shifting and response flexibility, which are important components of divergent thinking [9]. Furthermore, the finding indicates that divergent thinking is related to regional differences in D2 densities, since the DRD2 TAQ IA polymorphism has been shown to modulate D2 binding potential (D2BP) in both striatal [10] and extrastriatal regions [11].

Divergent thinking is traditionally measured using alternate uses test, for eg., in which a familiar object like brick is provided and subjects asked to name novel use for that object. The responses are marked for creativity as per the follwoing criterion:

  • Fluency–the number of valid responses;
  • Originality–how frequent the participant’s responses were among the responses of the rest of the sample;
  • Flexibility–the number of semantic categories produced;
  • Switching–the number of shifts between semantic categories;
  • and Elaboration–how extensive each response is (if the task involves producing more than single words)

The main findings of the study was that dopamine D2 binding potential (D2BP) receptor density in thalamus correlated negatively with divergent thinking and creativity scores. Here is how the authors interpret the results:

Based on the current findings, we suggest that a lower D2BP in the thalamus may be one factor that facilitates performance on divergent thinking tasks. The thalamus contains the highest levels of dopamine D2 receptors out of all extrastriatal brain regions [33], [45]. Decreased D2BP in the thalamus has been suggested, firstly, to lower thalamic gating thresholds, resulting in decreased filtering and autoregulation of information flow [31] and, secondly, to increase excitation of cortical regions through decreased inhibition of prefrontal pyramidal neurons [46], [47], [48]. The decreased prefrontal signal-to-noise ratio may place networks of cortical neurons in a more labile state, allowing them to more easily switch between representations and process multiple stimuli across a wider association range [49]. This state, which we hereforth will refer to as the “creative bias”, could benefit performance on tasks that involve continuous generation and (re-)combination of mental representations and switching between mind-sets. The creative bias could also explain why the different measures of divergent task performance correlate: A decreased signal-to-noise ratio in thalamus would decrease information gating and possibly increase fluency; decreased signal-to-noise ratio in cortical regions should better enable flexibility and switching between representations; similarly, the associative range should be widened and selectivity should be decreased which might spur originality and elaboration.

Besides carrying benefits related to fluency and switching, the decreased signal-to-noise ratio associated with the creative bias should be disadvantageous in relation to tasks that require high levels of selective attention. Some support for this prediction can be taken from Dorfman [50] who showed that the greater a person’s divergent thinking scores, the slower his or her reaction times were on a negative priming task requiring the inhibition of interfering information. Furthermore, the creative bias may also bring a risk of excessive excitatory signals from the thalamus overwhelming cortical neurotransmission, with ensuing cognitive disorganization and positive symptoms [30]. It is thus tempting to suggest that dopaminergic modulation of neurotransmission mediated through dopamine D2-receptors could be one of the mechanisms which associate creativity with positive psychotic symptoms. Interestingly, positive symptoms are not necessarily related to problems in executive function, at least not to the same extent as negative symptoms [51], which indicates that in the creative individual “blind variation” might be affected without a concomitant decline in “selective retention”. It can be speculated that aberrant thalamic function may promote unusual associations, as well as improved performance on divergent thinking tests in healthy individuals, in the absence of the detrimental effects typically associated with psychiatric disorders. In other words, thinking outside the box might be facilitated by having a somewhat less intact box.

In plain English speak, the same decreased signal-to-noise ratio in perfrontal regions that gives rise to creativity also gives rise to proneness to psychosis. The more the noise that is introduced the greater the chances that the ideas generated by ‘blind variation’ are more creative; if the ‘selective retention’ procedure is also defective or loosened to an extent, it may result in psychopathology and psychosis, while if intact it leads to creativity. Thus while one factor , that of loosening of associations, flexibility and set switching is common to both psychosis and creativity, the defects in selective retention may be the crucial factor that distinguishes brains from bonkers.

Reblog this post [with Zemanta]

de Manzano, ?., Cervenka, S., Karabanov, A., Farde, L., & Ullén, F. (2010). Thinking Outside a Less Intact Box: Thalamic Dopamine D2 Receptor Densities Are Negatively Related to Psychometric Creativity in Healthy Individuals PLoS ONE, 5 (5) DOI: 10.1371/journal.pone.0010670

The Creativity-dopamine (b)linkage: more brains and bonkers connections

ResearchBlogging.org

rh?zom?ng Cam?ra?Obscura pl?ats . .
Image by jef safi via Flickr

Creativity is certainly different from intelligence; it is usually gauged as the ability to make novel and useful unique contributions to a field. Creativity itself is not a unified construct but can be broken into convergent creativity (involving more focused approach) and divergent creativity (involving more widening and loosening of associations).

It has been evident for quite some time that there is a connection between insanity (especially bipolar/schizophrenia spectrum) and creativity , especially as evidenced by the creative bent of schizotypal people. See for example this article covering a recent study that looks at exactly the same issue. However, most of these studies rely on a unitary construct of creativity that does not do full justice to the correlations that could be found if convergent and divergent creativity was distinguished and effect of intelligence was factored out. The new study by Hommel, B. does just that.

Schizophrenia/psychosis as many will know from their elementary neuroscience knowledge is associated with dopamine dysfunction; specifically it is believed that high baseline dopamine levels are there in schizophrenics/psychotics. So it was not unreasonable for Hommel et al to hypothesize that dopamine should have some relation with creativity possible higher dopamine associated with high creativity. However, dopamine has shown an inverse U relation for many other factors and thus they were cautious and tried to fit both linear and quadratic graphs to their data. But we are moving ahead of ourselves. Before they could find the underlying relation between dopamine and creativity, they had to measure these things accurately.

They measured dopamine using Eye Blink Rate (EBR): that is how many time you blink in a minute. For creativity , they measured Convergent Creativity using a remote association task (don’t go by the name …the task has only one answer and measures convergent thinking) . for eg. a subject is given three words (say time, hair, stretch) and have to come up with a word that is commonly related to all three (answer: long) . this reliably measures creativity but of he convergent type. For Divergent thinking , they administered the Alternate Uses task (AUT),a task that requires one tocome up with novel uses of everyday objects like brick, toothpaste etc. The responses to AUT were further coded for fluency (how easily one could come up with alternatives measured by total no. of responses) , flexibility(the number of different categories used or how remote the mind wandered) and elaboration (the level of detail surrounding the use). They also measured fluid intelligence using Raven’s progressive matrices.

They then conducted experiments (administered the tests to subjects) , collected data and analyzed the results. The main findings of interest to us is that they found a inverse u shaped relation between dopamine (EBR) and flexibility dimension fo divergent thinking. This effect was present even when the effect of intelligence was factored out. thus both low dopamine, as well as too much dopamine is detrimental to flexible divergent thinking/creativity and schizotypals , placed precariously between normals and psychotics are best placed to be the most creative as they presumably have the optimum dopamine levels. the authors also argue that schizophrenics dopamine levels should not be brought down indiscreetly by using anti-psychotics (which reduce dopamine levels) but they should be brought in the optimum range of dopamine functioning. this obviously has immense importance and treatment implications. No wonder creative people feel stiffed when on anti-psychotics- their dopamine levels are being brought down way too much.

The other interesting finding was that dopamine (EBR) was negatively ad linearly related to convergent thinking. Thus, it is evident that convergent creativity and divergent creativity are different constructs and while dopamine has a complex quadratic relationship with divergent thinking, that with convergent thinking is linear though not very comforting. It seems that as dopamine levels increase the ability to narrow focus diminishes and this would be concordant with other studies linking dopamine to ADHD for example.

Overall, a view of how brains and bonkers are two sides of the same coin is emerging and it is exciting to note that many previous inconsistencies in literature around this issue may have to do with not differentiating and decomposing creativity into its many components and not looking for inverse u shaped effects.

Chermahini SA, & Hommel B (2010). The (b)link between creativity and dopamine: Spontaneous eye blink rates predict and dissociate divergent and convergent thinking. Cognition PMID: 20334856

Reblog this post [with Zemanta]

Creativity-psychosis linkage via reduced white matter /myelination

ResearchBlogging.org
I have been following, and am passionate about, the positive psychology movement for quite some time, but was surprised to discover that there was something called positive neuroscience also in place. I recently came across this new scientist article about the research paper of Rex Jung et al and was pleased to discover that Jung was working on the frontier of applying latest in neuroscience research to Positive brain states and substrates like that involved in creativity.

The article is in PLOSOne, an open access journal and is lucidly written , so you should go and read it now. I’ll anyway like to summarize their study results. First a bit of background about creativity psychopathology linkage.

Some research reports positive correlations between various definitions of creativity and a diagnosis of psychopathology [1], [2], [3], [4]. Other studies report that psychopathology is rarely, if ever, associated with creative insight, capacity, or productivity [5]. When artists are studied more carefully, certain personality characteristics appear to reside upon a continuum of both normal behavior and psychopathology. For example, creative expression in the visual arts and poetry has been linked with the overlapping personality traits of schizotypy and Openness to Experience (Openness), and particularly to self-reports of “unusual experiences” and “unconventional nonconformity”, but not the “introvertive anhedonia” characteristic of schizophrenia [6].

This is inline with what we have been covering at mouse trap regarding association of creativity with the psychotic spectrum especially the creativity that is artistic or revolutionary in nature rather than scientific and methodical in nature. This is how the authors distinguish between types of creativity inline with my views that one type of creativity is autistic (cognitive) in nature while the other is psychotic (emotional) and these are on a continuum.

First, there does not exist one “creativity”; rather, this construct is hypothesized to reside upon a continuum between cognitive (i.e., scientific) and emotional (i.e., artistic) behavioral domains [41], [42]. Thus, when comparing scientists and artists directly, researchers have found lower lifetime rates of psychopathology for: 1) scientists compared to artists, 2) natural scientists compared to social scientists, 3) nonfiction writers compared to fiction writers and poets, and 4) formal artists compared to “expressive” artists [3], [4], [43]. These findings have led researchers to hypothesize a hierarchical structure of creativity across disciplines [42], which echoes the notions of “paradigmatic” (i.e., a fundamental model of events) versus “revolutionary” (i.e., rejection of doctrines) approaches as applied to the sciences [44]. The benefits of working within the lines of a given field appear to be lower levels of psychopathology; alternately, individuals with lower levels of psychopathology may be attracted to such endeavors. Similarly, there is increasing evidence that the cost of “revolutionary” approaches to creative endeavors, whether it is in the arts or sciences, may be associated with increased levels of psychopathology although, again, causative links are weak at best.

So that fits in with broader creativity/ psychopathology linkage, but to get back to the current study the authors had already established earlier that performance on Divergent Thinking (DT) (a measure of creativity) “exhibited significant inverse relationships with both cortical thickness in frontal lobe regions and metabolite concentration of N-acetyl-aspartate (NAA) in the anterior cingulate cortex in normal young subjects “. Thus, some theoretical relationship between creativity and underlying brain circuitry in the frontal reagion was available a priori. Also, research by other researchers has already established that ” Both schizophrenic and bipolar patients have been shown to have reduced fractional anisotropy (FA) in the anterior thalamic radiation [12], [13] and uncinate fasciculus [14] within frontal brain regions. Similarly, reduced FA was observed within the uncinate fasciculus of a cohort with schizotypal personality disorder, providing strong support for the hypothesis that similar neural phenotypes may not result in full-blown clinical symptoms [15]. Finally, in normal subjects, the Neuroregulin-1 (NRG1) single nucleotide polymorphisms (SNP’s) SNP8NRG243177 and SNP8NRG221533 were found to predict lower FA in the left anterior thalamic radiation [16]. As NRG1 has been found to predict higher risk of schizophrenia [17], [18] and bipolar disorder [19], and is linked with axonal myelination and migration [20], these authors hypothesize a mechanistic link between NRG1 within the anterior thalamic radiation and risk for psychotic disorders [16].”

Thus, from the above it is easy to see that there should be a inverse relationship between Fractional Anisotropy (a construct related to myelination of axons) in the frontal regions and creativity if one assumes that creativity and psychopathology are related and are on one end of a continuum. And this inverse relationship between creativity and FA is exactly what they found:

Our results suggest a convergence between a cognitive measure of divergent thinking, a personality measure of Openness, and a white matter integrity measure within the inferior frontal lobes. We found that normal young subjects with lower levels of FA within predominantly left inferior frontal white matter (i.e., regions overlapping the uncinate fasciculus and anterior thalamic radiation) scored higher on the CCI; similarly subjects with lower levels of FA within the right frontal white matter (i.e., regions overlapping the uncinate fasciculus and anterior thalamic radiation) scored higher on self-reported measures of Openness. These two regions of white matter overlap with those reported by other researchers who found lower FA in both schizophrenia and bipolar disorder [13], [14], [30].

They could also nail the reduced FA to reduced myelination as radial diffusion was affected more than axial diffusion. As reduced myelination has been shown as a diatheisis for psychosis, this fits in with previous research linking risk factors common to psychosis and creativity.

Whereas more neural resources are often associated with higher intellectual capacity in a parieto-frontal network of brain regions [39], studies in DT appear to suggest that less is often better in a different network of brain regions, particularly fronto-cingulate-subcortical networks linked via white matter loops [40].

One can speculate that frontal region, more concerned with executive control , when with reduced activity or functional connectivity , may not inhibit the other brain regions that much, and may thus lead to flowering of inherent creativity and cross-talk amongst different brain regions. On the other hand too much white matter/ gray matter in this region may lead to too much control and leave little room for flexibility and creativity.

However, while lower FA is commonly seen in diseases where both cognition and white matter integrity are impaired (e.g., Traumatic Brain Injury, Schizophrenia, Alzheimer’s disease) [45], [46], [47], evidence is accumulating that higher FA in particular brain regions may also be associated with clinical disorders including post-traumatic stress disorder [48], obsessive-compulsive disorder [49], panic disorder [50], synaesthesia [51], and Williams syndrome [52].

It is interesting to note that enhanced FA is associated with clinical disorder of Williams syndrome, which is associated with Autism; on the other end of continuum, reduced FA in particular brain region is associated with psychosis proneness, thus providing another convergent linkage of autism and psychosis as opposites.

Jung, R., Grazioplene, R., Caprihan, A., Chavez, R., & Haier, R. (2010). White Matter Integrity, Creativity, and Psychopathology: Disentangling Constructs with Diffusion Tensor Imaging PLoS ONE, 5 (3) DOI: 10.1371/journal.pone.0009818

Reblog this post [with Zemanta]