Category Archives: intentionality

Major conscious and unconcoscious processes in the brain

Today I plan to touch upon the topic of consciousness (from which many bloggers shy) and more broadly try to delineate what I believe are the important different conscious and unconscious processes in the brain. I will be heavily using my evolutionary stages model for this.

To clarify myself at the very start , I do not believe in a purely reactive nature of organisms; I believe that apart from reacting to stimuli/world; they also act , on their own, and are thus agents. To elaborate, I believe that neuronal groups and circuits may fire on their own and thus lead to behavior/ action. I do not claim that this firing is under voluntary/ volitional control- it may be random- the important point to note is that there is spontaneous motion.

  1. Sensory system: So to start with I propose that the first function/process the brain needs to develop is to sense its surroundings. This is to avoid predators/ harm in general. this sensory function of brain/sense organs may be unconscious and need not become conscious- as long as an animal can sense danger, even though it may not be aware of the danger, it can take appropriate action – a simple ‘action’ being changing its color to merge with background. 
  2. Motor system:The second function/ process that the brain needs to develop is to have a system that enables motion/movement. This is primarily to explore its environment for food /nutrients. Preys are not going to walk in to your mouth; you have to move around and locate them. Again , this movement need not be volitional/conscious – as long as the animal moves randomly and sporadically to explore new environments, it can ‘see’ new things and eat a few. Again this ‘seeing’ may be as simple as sensing the chemical gradient in a new environmental.
  3. Learning system: The third function/process that the brain needs to develop is to have a system that enables learning. It is not enough to sense the environmental here-and-now. One needs to learn the contingencies in the world and remember that both in space and time. I am inclined to believe that this is primarily pavlovaion conditioning and associative learning, though I don’t rule out operant learning. Again this learning need not be conscious- one need not explicitly refer to a memory to utilize it- unconscious learning and memory of events can suffice and can drive interactions. I also believe that need for this function is primarily driven by the fact that one interacts with similar environments/con specifics/ predators/ preys and it helps to remember which environmental conditions/operant actions lead to what outcomes. This learning could be as simple as stimuli A predict stimuli B and/or that action C predicts reward D .
  4. Affective/ Action tendencies system .The fourth function I propose that the brain needs to develop is a system to control its motor system/ behavior by making it more in sync with its internal state. This I propose is done by a group of neurons monitoring the activity of other neurons/visceral organs and thus becoming aware (in a non-conscious sense)of the global state of the organism and of the probability that a particular neuronal group will fire in future and by thus becoming aware of the global state of the organism , by their outputs they may be able to enable one group to fire while inhibiting other groups from firing. To clarify by way of example, some neuronal groups may be responsible for movement. Another neuronal group may be receiving inputs from these as well as say input from gut that says that no movement has happened for a time and that the organism has also not eaten for a time and thus is in a ‘hungry’ state. This may prompt these neurons to fire in such a way that they send excitatory outputs to the movement related neurons and thus biasing them towards firing and thus increasing the probability that a motion will take place and perhaps the organism by indulging in exploratory behavior may be able to satisfy hunger. Of course they will inhibit other neuronal groups from firing and will themselves stop firing when appropriate motion takes place/ a prey is eaten. Again nothing of this has to be conscious- the state of the organism (like hunger) can be discerned unconsciously and the action-tendencies biasing foraging behavior also activated unconsciously- as long as the organism prefers certain behaviors over others depending on its internal state , everything works perfectly. I propose that (unconscious) affective (emotional) state and systems have emerged to fulfill exactly this need of being able to differentially activate different action-tendencies suited to the needs of the organism. I also stick my neck out and claim that the activation of a particular emotion/affective system biases our sensing also. If the organism is hungry, the food tastes (is unconsciously more vivid) better and vice versa. thus affects not only are action-tendencies , but are also, to an extent, sensing-tendencies.
  5. Decisional/evaluative system: the last function (for now- remember I adhere to eight stage theories- and we have just seen five brain processes in increasing hierarchy) that the brain needs to have is a system to decide / evaluate. Learning lets us predict our world as well as the consequences of our actions. Affective systems provide us some control over our behavior and over our environment- but are automatically activated by the state we are in. Something needs to make these come together such that the competition between actions triggered due to the state we are in (affective action-tendencies) and the actions that may be beneficial given the learning associated with the current stimuli/ state of the world are resolved satisfactorily. One has to balance the action and reaction ratio and the subjective versus objective interpretation/ sensation of environment. The decisional/evaluative system , I propose, does this by associating values with different external event outcomes and different internal state outcomes and by resolving the trade off between the two. This again need not be conscious- given a stimuli predicting a predator in vicinity, and the internal state of the organism as hungry, the organism may have attached more value to ‘avoid being eaten’ than to ‘finding prey’ and thus may not move, but camouflage. On the other hand , if the organisms value system is such that it prefers a hero’s death on battlefield , rather than starvation, it may move (in search of food) – again this could exist in the simplest of unicellular organisms.

Of course all of these brain processes could (and in humans indeed do) have their conscious counterparts like Perception, Volition,episodic Memory, Feelings and Deliberation/thought. That is a different story for a new blog post!

And of course one can also conceive the above in pure reductionist form as a chain below:

sense–>recognize & learn–>evaluate options and decide–>emote and activate action tendencies->execute and move.

and then one can also say that movement leads to new sensation and the above is not a chain , but a part of cycle; all that is valid, but I would sincerely request my readers to consider the possibility of spontaneous and self-driven behavior as separate from reactive motor behavior. 

The factor structure of Religiosity and its neural substrates

A new article in PNAS by Grafman et al, argues that Religiosity can be broken down into three factors and the underlying machinery that these factors use are basic Theory Of Mind (ToM) circuitry, thus substantiating the claim that religion occurred as a byproduct of basic ToM related adaptations, although not ruling out that once established Religion may have provided adaptive advantage.

First a detour. I am more interested in this study as I had once claimed that Schizophrenics were more religious than Autistics and I have been maintaining that Religion is just one aspect of an underlying hyper-mentalizing to hyper-physicalism continuum on which these two spectrum disorders lie on opposite ends. The case for less ToM abilities in ASD seems to be fairly settled; its also becoming apparent that in Schizophrenia spectrum disorders you have excess of ToM abilities; This study by showing the ToM to Religion linkage, fills in the gaps and another puzzle piece falls in place.

On to the study. The authors first show that Religious Belief can be split into three factors. they use a novel (to me) technique of Multi Dimensional Scaling (MDS) to tease out the factors associated with religious belief. I have not checked how MDS works, but I assume it is similar to Factor analysis and can give us reliable factor structure underlying the data. They build on previous research and discovered the following three factors:

  1. God’s perceived level of involvement,
  2. God’s perceived emotion, and
  3. religious knowledge source. 

The first factor refers to endowing intentionality to superantural agents like God; the second factor refers to endowing emotions to God an dthe thierd factor refers to the source of the religious beliefs- whether it is doctrinal or derived from experience. Thus the trinity of intention, emotion and belief – alos the trinity involved in ToM tasks. The authors do a good job of describing the factors, so I’ll let them do it.

Dimension 1 (D1) correlated negatively with God’s perceived level of involvement (–0.994), Dimension 2 (D2) correlated negatively with God’s perceived anger (–0.953) and positively with God’s perceived love (0.953), and Dimension 3 (D3) correlated positively with doctrinal (0.993) and negatively with experiential (–0.993) religious content. D1 represents a quantitative gradient of a single concept and we will be referring to it as ‘‘God’s perceived level of involvement.’’ D2 and D3 represent gradients of contrasting concepts; we will be referring to them as ‘‘God’s perceived emotion’’ (D2) and ‘‘religious knowledge source’’ (D3).

God’s perceived level of involvement (D1) organizes statements so that ‘‘God is removed from the world’’ or ‘‘Life has no higher purpose’’ have high positive coordinate values, while ‘‘God’s will guides my acts,’’ ‘‘God protects one’s life,’’ or ‘‘God is punishing’’ have high negative values. Generally speaking, on the positive end of the gradient lie statements implying the existence of uninvolved supernatural agents, and on the negative end lie statements implying involved supernatural agents.

God’s perceived emotion (D2) ranges from love to anger and organizes statements so that ‘‘God is forgiving’’ and ‘‘God protects all people’’ have high positive-coordinate values, while ‘‘God is wrathful’’ and ‘‘The afterlife will be punishing’’ have high negative values. Generally speaking, on the positive end of the gradient lie statements implying the existence of a loving (and potentially rewarding) supernatural agent, and on the negative end lie statements suggestive of wrathful (and potentially punishing) supernatural agent.

Religious knowledge (D3) ranges from doctrinal to experiential and organizes statements so that ‘‘God is ever-present’’ and ‘‘A source of creation exists’’ have high positive-coordinate values, while ‘‘Religion is directly involved in worldly affairs’’ and ‘‘Religion provides moral guiding’’ have high negative values. Generally speaking, on the positive end of the gradient lies theological content referring to abstract religious concepts, and on the negative end lies theological content with moral, social, or practical implications.

This breakup of religiosity into three factors is itself commendable, but then they go on to show, using fMRI data that these factors activate areas of brain associated with ToM abilities. I don’t really understand all their fMRI data, but the results seem interesting. Here is what they conclude:

The MDS results confirmed the validity of the proposed psychological structure of religious belief. The 2 psychological processes previously implicated in religious belief, assessment of God’s level of involvement and God’s level of anger (11), as well as the hypothesized doctrinal to experiential continuum for religious nowledge, were identifiable dimensions in our MDS analysis. In addition, the neural correlates of these psychological dimensions were revealed to be well-known brain networks, mediating evolutionary adaptive cognitive functions.

This study defines a psychological and neuroanatomical framework for the (predominately explicit) processing of religious belief. Within this framework, religious belief engages well-known brain networks performing abstract semantic processing, imagery, and intent-related and emotional ToM, processes known to occur at both implicit and explicit levels (36, 39, 50). Moreover, the process of adopting religious beliefs depends on cognitive-emotional interactions within the anterior insulae, particularly among religious subjects. The findings support the view that religiosity is integrated in cognitive processes and brain networks used in social cognition, rather than being sui generis (2–4). The evolution of these networks was likely driven by their primary roles in social cognition, language, and logical reasoning (1, 3, 4, 51). Religious cognition likely emerged as a unique combination of these several evolutionarily important cognitive processes (52). Measurable individual differences in these core competencies (ToM, imagination, and so forth) may predict specific patterns of brain activation in response to religious stimuli.

As always I am excited and would like to see some field work being carried out to determine religiosity in ASD and Schizophrenia spectrum groups and see if we get the same results (less religiosity in autism and more religiosity in schizophrenics) as predicted, based on their baseline ToM abilities.

PS: I was not able to use the DOI lookup fetaure of Research Blogging, but the DOI of article is 

ResearchBlogging.org
* Dimitrios Kapogiannis,, * Aron K. Barbey,, * Michael Su,, * Giovanna Zamboni,, * Frank Krueger,, * and Jordan Grafman (2009). Cognitive and neural foundations of religious belief PNAS

Evidence for heightened Agency in Schizophrenia

I have been maintaining that Autism and Schizophrenia are opposites on a continuum and one dimension on which they differ is Agency , with autistics attributing too less agency to themselves (and others), while schizophrenics attributing too much agency to themselves (and others).

The case for people with ASD is fairly settled. They have deficits in theory Of Mind (ToM) and one mechanism by which this deficit seems to arise is via their attributing less agency to themselves as well as others.

For Schizophrenics too, it was speculated that they have problems with agency , but a clear illustration that they have an enhanced agency attribution device was not firmly established. This study, which dates back to 2003, in my opinion, establishes the fact that their is hyper-agency attribution (or hyper-self-menatlizing) in schizophrenics.

The study in question is one by Haggard et al , and it uses an experimental paradigm to illustrate that schizophrenics indeed have problems with self- agency attribution, and that too in the hypothesized direction.

Here is the abstract:

An abnormal sense of agency is among the most characteristic yet perplexing positive symptoms of schizophrenia. Schizophrenics may either attribute the consequences of their own actions to the intentions of others (delusions of influence), or may perceive themselves as causing events which they do not in fact control (megalomania).Previous reports have often described inaccurate agency judgments in schizophrenia, but have not identified the disordered neural mechanisms or psychological processes underlying these judgments.We report the perceived time of a voluntary action and its consequence in eight schizophrenic patients and matched controls.The patients showed an unusually strong binding effect between actions and consequences. Specifically, the temporal interval between action and consequence appeared shorter for patients than for controls. Patients may overassociate their actions with subsequent events, experiencing their actions as having unusual causal efficacy.Disorders of agency may reflect an underlying abnormality in the experience of voluntary action.

Now, let us pause and recollect that Chris Frith had postulated that the voluntary action mechanism in Scizophrenics is somewhat malformed and specifically there is a disconnect between intention attribution and voluntary action manifestation. He however had not clearly stated that there would be over-attribution of intention to voluntary actions. We all know that dopamine is associated with voluntary action (voluntary movements) and that baseline dopamine is in excess in schizophrenics. This paper ties things in together showing that excess dopamine secretion in basal ganglia and cortical areas may lead to greater biding between intentions and subsequent actions (consequences) and by this mechanism may lead to over-attribution of agency. Of course the paper doe snot establish this mechanism but just speculates on it as one of the possible mechanisms. It is also important to pause and note that schizophrenics have a jumping-to-conclusions bias and thus if an intention and action were more tightly bound (occurred in time in close proximity)_, then they are more likely to judge the two events to be related and the intention to cause the action.

Now let me get to the actual experiment. Haggard et al asked schizophrenics as well as matched controls to note subjective time (using Libets approach) when they decided to voluntarily press a computer key, and also subjective time when they first heard an auditory tone . The tone was presented 250 ms after their voluntary key press. As has been established earlier, and using controls in this experiment, people advance the key press in future (shift it towards future time from the exact time they actually pressed the key) so that subjectively the key press happens after some time form the objective key press and in the direction of the tone presentation. Thus, the effective subjective time between the key press and the tone is reduced. This binding between a voluntary action and its consequence , happens in normal individuals too, but in schizophrenics this happened significantly more in magnitude ans was dependent on two factors. first, like in normals , the voluntary key press was advanced in time towards the tone presentation, but this advance was significantly greater than in the case of controls. Secondly, the subjective auditory tone was sort of anticipated and shifted back in time towards the voluntary key press in schizophrenics. Thus, in schizophrenics, it seemed to them that the auditory tone had occurred prior to when it was actually presented. This lead to overall very significant reduction in subjective time experienced between the voluntary key press and the tone hearing, thus binding the two events strongly and leading to stronger agency inferred. to quantize the things a bit, in normal controls the voluntary key press was on the average occurring 26 ms from the actual key press, the auditory tone was heard 5 ms from the actual presentation and thus the subjective difference between the key press (intention) and tone (consequence) was 250-(26+5)= 239 ms. In schizophrenics, the key press was deemed to occur 60 ms after the actual key press, however most importantly the tone was not heard subjectively after its presentation, but was heard anticipatory 139 ms before its actual presentation, thus the actual perceived subjective time between the key press (intention) and the tone (consequence) was 250-60-139 = 51 ms only. Now , one can easily see, that if perceived subjective time between tow events is shortened in schizophrenia, then wont they end up falsely clubbing many coincidental things too together, because they seem to follow each other in close temporal proximity.

To appreciate the results, one needs to put these results in the broader context of what we know about agency in schizophrenics:

Previous laboratory studies have investigated agency using action attribution tasks. In these tasks, the patient is asked to perform an action, and is shown a visual image corresponding to that action, for example, a line drawn with a pen , a video of a hand making a manual posture , or a computerised image of a joystick moving. By introducing a mismatch between the performed action and the visual feedback, experimenters investigate the accuracy of attribution judgments. The subject has to attribute the viewed image either to an action he has just been instructed to make or to some other source. Interestingly, all these studies have found schizophrenics abnormally willing to attribute to themselves actions which in fact differ from the ones they performed. Thus, they are less sensitive than control subjects to spatial, temporal or kinematic mismatches between actions and visual feedback. The direction of these results points towards an excessive, rather than a reduced, sense of agency. Such results have been interpreted in the context of an internal forward model. Schizophrenic patients’ errors involve mostly over-attribution, implying a forward model with an unusually tolerant comparator.

Impaired judgement of agency can also be linked to the brain abnormalities underlying the disease. Agency involves forming a conscious mental association between one’s own intentional actions, and their consequences in the outside world. Thus, agency may be a conscious aspect of a more general system for instrumental or operant learning about environmental contingencies and rewards. Animal learning studies show that dopaminergic circuits, including the basal ganglia and medial forebrain are essential for associating actions with their effects, and for motivating behaviours. Brain imaging studies in man show that these same areas are active when a voluntary action produces a reward or other salient consequence . Moreover, these dopaminergic circuits are overactive in schizophrenia . Excessive dopaminergic activity might therefore explain abnormalities of conscious agency in schizophrenia, such as over-association between intentions and external events.

This is how they interpret their results:

More importantly, our schizophrenic patients seem to show an exaggerated version of the normal binding effect, or hyperbinding. These results could account for the findings of some action attribution experiments. Franck et al. asked patients and controls to move a joystick and then to observe their movements on a computer screen after a delay. The experimenters systematically varied the delay to investigate at what point the two groups ceased to accept the observed action as their own. Control subjects detected the temporal discrepancy between their action and the image with delays of around 100–150 ms. Schizophrenic subjects were much more tolerant, and accepted the viewed action as their own even for delays of 300 ms. Overall, the detection threshold for the relevant action was increased by about 150–200 ms for the patients compared to the controls. This value can be compared to the 180 ms difference between our patients and controls in the implied perceptual duration of the interval between action and tone.

The direction of the attribution effect is important: schizophrenics over-attributed events to their own agency. Our data suggests that schizophrenic patients have unusually strong associations between conscious representations of action and consequence. Thus, they might bind action and viewed image across the substantial delay periods imposed in the Franck et al. experiment, and be unaware of the artificially-induced lag between these events. There may be a critical period in which to perceive the consequence of an action. Actions and events falling in this period may be perceptually bound. A deficit in setting the duration of this critical period in schizophrenics could contribute to the shifts we found in their subjective temporal experience. This view would interpret abnormal conscious experience in schizophrenia as a problem in predicting the consequences of one’s own actions. Further work could investigate whether temporal analysis in schizophrenic patients is defective only when concerning their own actions, or also when observing actions made by others.

I am thrilled as usual and predict that if the same experimental paradigm is used with Autistic, then they will show very little or no forward movement of subjective time between their actual voluntary key-press and the subjective feel of when they decided to press the key. Also, there would be no anticipatory backwards movement of subjective time for when the tone was heard. Thus, Autistic would perceive the time gap as 250 ms only, or may even perceive the time to be more than 250 ms depending ion whether they move the voluntary key press subjective time back in time. No matter what they should show lesser binding between the intention (if they can form one) and consequence.
ResearchBlogging.org
Haggard P, Martin F, Taylor-Clarke M, Jeannerod M, Franck N. (2003). Awareness of action in schizophrenia Neuroreport, 14 (7), 1081-1085

Intentionality: autism research and implications for schizophrenia

Edouard Machery at the Experiments in Philosophy blog writes about a study he conducted with Zalla that found that people with Aspergers syndrome were deficient when it came to identifying purely instrumental desires and the actions resulting from them as intentional actions.  but to understand all that we have to understand the concept of purely instrumental desire. This is best done with the free-cup and extra-dollar cases that Machery has constructed to illustrate this phenomenon:

The Free-Cup Case

Joe was feeling quite dehydrated, so he stopped by the local smoothie shop to buy the largest sized drink available. Before ordering, the cashier told him that if he bought a Mega-Sized Smoothie he would get it in a special commemorative cup. Joe replied, ‘I don’t care about a commemorative cup, I just want the biggest smoothie you have.’ Sure enough, Joe received the Mega-Sized Smoothie in a commemorative cup. Did Joe intentionally obtain the commemorative cup?

The Extra-Dollar Case

Joe was feeling quite dehydrated, so he stopped by the local smoothie shop to buy the largest sized drink available. Before ordering, the cashier told him that the Mega-Sized Smoothies were now one dollar more than they used to be. Joe replied, ‘I don’t care if I have to pay one dollar more, I just want the biggest smoothie you have.’ Sure enough, Joe received the Mega-Sized Smoothie and paid one dollar more for it. Did Joe intentionally pay one dollar more?

You surely think that paying an extra dollar was intentional, while getting the commemorative cup was not. So do most people.

Machery likes to analyze the different actions involved in getting a smoothie in terms of their causal structure as well as their valence for the subject (positive valence means actively desired; while negatively or neutrally valanced meaning that one would not like that action to take place normally, but might indulge in if it is instrumental and an intermediate step towards archiving of an ultimate desire.

Thus, in the extra dollar case  quenching thirst is the ultimate desire, buying a smoothie an instrumental desire, while shelling an extra dollar though negatively valued is still a purely instrumental desire as it is requisite for fulfilling the ultimate desire. Thus, normal people would consider paying the extra-dollar as intentional as it was due to an action due to a (purely) instrumental desire.

In the free-cup case, again the ultimate desire is to quench the thirst, the instrumental desire is to buy a smoothie, and the free cup that one gets is neither desired ultimately or as (purely) instrumentally as a menas towards an end. In simple words it is not desired at all and I would like to name it as co-incidental desire as opposed to instrumental desire (because having a special edition cup may still have some valence for joe, though he doesn’t actively desire it. Normal as well as Aspergers people deemed getting the free cup as non-intentional.

Where the Aspergics differed was in the extra dollar case. They still thought that paying the extra dollar was non-intentional and Eduoard theorizes that this may be due to inability of those with ASD to consider acts which are merely means towards an end  as having an intentional quality.

I might not agree with the specific theorizing of Machery, but I agree that people with ASD have deficits in intentionality and I have been shouting this from rooftops for quite some time now. I also assert that Schizophrenics have too much concept of intentionality. I would not be surprised if a schizotypal, schizophrenic population was given these above two scenarios and it was found that a co-incidental desire like getting a free-cup was also deemed to be an intentional actions. One could come up with strange rationalizations and explanations and believe that though he just wanted to quench his thirst he went to this vendor only because he also wanted a free cup.  This would be an extreme case of Magical Thinking, but I wont be surprised to see schizophrenics attributing more intentionality than is done by normal people.  I hope someone does the experiment and lets me know! Edouard are you listening?

ResearchBlogging.org

EDOUARD MACHERY (2008). The Folk Concept of Intentional Action: Philosophical and Experimental Issues Mind & Language, 23 (2), 165-189 DOI: 10.1111/j.1468-0017.2007.00336.x

Language and intentionality

Michael Tomasello has a new book out titled ” The origins of human communication” and the book seems to be promising, though has been a bit harshly reviewed at the Babel’s Dawn. In it Tomasello proposes that a pre-requisite for language is ‘a psychological infrastructure of shared intentionality’. It is based on Jean Nicod lectures and you can read a review here too.
What I am most interested is in this intentionality business. I have commented on orders of intentionality previously and this shared intentionality seems to fit the third order of intentionality that I proposed was necessary for communication.

But first for the premise of the book:

Tomasello opens his book with a consideration of the “infrastructure” that enables people to tell one another things. Apes do not have this infrastructure and the absence leads to scenes like this one:

A “whimpering chimpanzee child” is searching for its mother; the other chimps in the area are smart enough and social enough to recognize why the chimpanzee is whimpering; sometimes one of the chimps present will know where the mother is, and of course chimps have the physical ability to raise an arm point out the mother; even so, chimpanzees never help forlorn infants by pointing to the mother.

Why not?

There is a straightforward, Darwinian explanation for the ape’s mum’s-the-word behavior. Individuals don’t help non-kin. There is nothing in it for the informed adults to help the whimpering child of another. But Tomasello comes at the question from another perspective. Humans typically do help out whimpering children, even if the child is a stranger. An adult, happening upon a solitary, unknown, whimpering child is very likely to stop and ask what is wrong, take charge, and stick around until the problem is resolved. This activity strikes us as perfectly natural, normal behavior, even though it is contrary to so many of the rules in Darwin’s book. What, Tomasello wonders, is there about humans that makes such behavior easy and routine? His answer: “a psychological infrastructure of shared intentionality” [p. 12].

Thus, the premise is that pro-social behaviour and the shared intentionality underlying it are the pre-requisites for any meaningful language to evolve. And for this some tools are required.

The psychological tools Tomasello refers to are cognitive and emotional. The cognitive tools give us the understanding to engage in joint purposes and joint attention. The emotional tools provide us with the motivation for helping and sharing with others. These tools enable people to act together on a “common ground.”

Ebolles goes on further to speculate that this could be tied to Autistics’ difficulty with language and I concur that the cognitive deficits related to intentionality as opposed to affective deficits empathy or mindblindness may be the roots of Autistics’ language and communicative difficulties. We already know that they lack ToM to an extent and they also have communicative and social difficulties; might lack of shared intentionality, or intentionality at all or the lack of feeling of one has an intentional agent,  lie at the heart of the autism issue?

Immediately one can imagine all sorts of peculiarities that would arise in people who lack some part of these needs. Some people might have the prosocial motivation but not the cognitive ability to form a bird’s eye view. Perhaps autistic-spectrum disorder includes this difficulty. Others might have the cognitive ability, but not the prosocial motivation. There’s your sociopath, in a nutshell.

I think this common ground and ‘infrastructure of shared intentionality’ concept is awesome and I intend to read the book and review it soon on this blog. 

Intentionality: order, order!

I have been reading, of late, some articles that have invoked the concept of intentionality and its orders. More specifically, this has been with respect to Social Brian hypothesis of Robin Dunbar, whereby he claims that humans evolved intelligence to be able to cope with your in-laws (and other social members of one’s groups). Leaving asides the main premise of the social brain hypothesis, which I find convincing to an extent, he also claims that monkeys have only first order intentionality, while apes have second order and humans are able to function at about fifth order of intentionality, with some like Shakespeare being able to work on the sixth order. To quote at length form the ‘beginner’s guide to intentionality’:

Computers can be said to know things because their memories contain information; however, it seems unlikely that they know that they know these things, in that we have no evidence that they can reflect on their states of ‘‘mind.’’ In the jargon of the philosophy of mind, computers are zero-order intentional machines. Intentionality is the term that philosophers of mind use to refer to the state of having a state of mind (knowing, believing, thinking, wanting, understanding, intending, etc).

Most vertebrates are probably capable of reflecting on their states of mind, at least in some crude sense: they know that they know. Organisms of this kind are first-order intentional. By extension, second-order intentional organisms know that someone else knows something, and third-order intentional organisms know that someone else knows that someone else knows something. In principle, the sequence can be extended reflexively indefinitely, although, in practice, humans rarely engage in more than fourth-order intentionality in everyday life and probably face an upper limit at sixth-order (‘‘Peter knows that Jane believes that Mark thinks that Paula wants Jake to suppose that Amelia intends to do something’’).

A minimum of fourth-order intentionality is required for literature that goes beyond the merely narrative (‘‘the writer wants the reader to believe that character A thinks that character B intends to do something’’). Similar abilities may be required for science, since doing science requires us to ask whether the world can be other than it is (a second-order problem at the very least) and then ask someone else to do the same (an additional order of intentionality).

I find the above definitions (and other I have found on the web), slightly problematic, so I’ll attempt my own synthesis on the matter:

  1. Zeroth order or No intentionality: Having knowledge but no ‘awareness ‘ of knowledge. Mere representation of information, but no meta awareness of that representation. Computers and machines , and even simple life forms like bacteria etc, may have this (no) intentionality, wherein they have ‘facts’ about the world, but no beliefs, desires etc.
  2. First Order Intentionality: Awareness of knowledge that is distinct from mere knowledge. A belief system. Knowing that something you know may be incorrect from the actual world scenario. You know what you know and you know what you don’t know. Meta cognition. Beliefs, desires etc. Important thing to note is that only ‘I know’ is covered in this definition. A limited ‘You know as I know’ may be covered at this order as one may be aware of other people as being intentional agents , but whose beliefs are congruent with one’s own! ‘You know something that may be different from what I know’ is not possible yet. Most mammals including rats and monkeys are at this level. Awareness ta this level may be that others too have facts of world at their disposal.
  3. Second order intentionality: Awareness of a belief-system that is distinct from the belief system itself. A Theory of Mind. You know that someone else may know things differently from both as they are and as you think they are. Awareness that others have a mind or a belief-system. Ability to keep two different belief systems in the mind- one of your own and the other of another third person. Apes and children age 4 demonstrate this level and order of intentionality. They have a theory of mind as to the fact that others have beliefs and that these are after all beliefs and can be false too. Awareness that others have beliefs, but still no awareness that they have a ToM too!
  4. Third order intentionality: Awareness of a ToM that is distinct from the ToM itself. A communicative intent. Joint attention. Language. symbol grounding. Knowing that someone else may have different views regarding what you yourself believe and thus it is important to communicate your internal intentions, beliefs , desires etc to others so that there is common ground on which communication and speech acts can proceed. this also enables grounds for lies and deceptions in the sense that one can deliberately lead someone to believe what one oneself does not believe. As per this source , communication requires third order of intentionality. To quote:
  5. Suppose my little brother intends for me to jump. He might (and sometimes does) achieve this by sneaking up behind me and yelling “Boo!”. But that’s not communication, in the fullest sense of the word. It would be quite a different sort of action were he to instead request of me, “please jump.” (I don’t think he’d find that nearly so fun, for one thing.) Such a speech-act would show not only that he intends me to jump, but also that he intends for me to recognize that he wants me to jump.

    Purposive communication requires an intentional state of at least third-order complexity. The speaker wants his audience to recognize what the speaker intends by his utterance. Put another way, you don’t just communicate ‘X’, you rather communicate, “I am trying to convey ‘X'”. (This is the difference between discreetly insulting someone, or making it clear to him that you want him to know you’re insulting him.) Anything less would fail to qualify as ‘communication’, in the fullest sense of the word.

  6. Fourth-order Intentionality: Awareness of a communicative act that is distinct from the communicative act itself: A narrative or story telling/ story understanding capability. An ability to weave experiences into a running narrative such that it incorporates different communicative acts or ‘scenes’. An understanding of ‘roles’ that one is playing that give shape to all the communicative acts one participate sin and the narrative one weaves for oneself. A limited awareness that others are also communicative agents , but not a full awareness , that like oneself, they are also acting a script/ playing a role/ having a running narrative using which they interpret events. It is important to emphasize that story telling requires one to visit a new world in which the protagonist is separate, but also one is in a state of willful suspension of disbelief and thus one feels along-with the protagonist, but still retains one’s own narrative: separate, and quite distinct, form the story-teller’s narrative. Story-telling, and story understanding and the interpreter module of humans that gives rise to stream of consciousness to me are the hallmarks of fourth order of intentionality and most of us juts stop there. One may mistakenly believe that there is only one role / narrative and that everybody shares the same narrative.
  7. Fifth order intentionality: Awareness of roles and narratives that are distinct from the role or narrative. An organizing system of religion/ myths using which one interprets stories. Awareness that others too have their own narratives and are playing a script/ performing their roles. Awareness that one’s role/ stance / understanding of world can be radically different from someone having the same experiences but using a different interpretation. A culture . A worldview. It is instructive to note that Dunbar considers that religion and story telling are higher level intentional activities.

I’ll leave things as they are for now as this fits nicely with my obsession with 5 + 3 stage developmental process. Higher orders of intentionality may exist, but probably we humans are not yet evolved to appreciate their subtleties/ find practical examples.