memory

Common mechanisms for learning (past), navigation(present) and dreams (future?)

Sorry for the brief(?) hiatus. I have left my day job to start a venture and so am a bit preoccupied. Hopefully, the mouse trap should benefit from the new arrangements.
Today I would like to highlight a recent study from MIT that once again highlighted the fact that the same brain mechanisms are used for envisaging the future as are used for reminiscing about the past.  The study was performed on rats and found that the rats sort of replayed their day-time navigational memories while they were dreaming. This in itself is not a new news and has been known for a long time; what they found additionally is that the rats also , sort of replayed the navigational memories/ alternatives in their head at a faster rate, to sort of think and plan ahead. This use of replaying the traces to think ahead to me is very important and cements the role of default netwrok in remebering the poast and envisaging the future.

When a rat moves through a maze, certain neurons called “place cells,” which respond to the animal’s physical environment, fire in patterns and sequences unique to different locations. By looking at the patterns of firing cells, researchers can tell which part of the maze the animal is running.

While the rat is awake but standing still in the maze, its neurons fire in the same pattern of activity that occurred while it was running. The mental replay of sequences of the animals’ experience occurs in both forward and reverse time order.

“This may be the rat equivalent of ‘thinking,'” Wilson said. “This thinking process looks very much like the reactivation of memory that we see during non-REM dream states, consisting of bursts of time-compressed memory sequences lasting a fraction of a second.

“So, thinking and dreaming may share the same memory reactivation mechanisms,” he said.
“This study brings together concepts related to thought, memory and dreams that all potentially arise from a unified mechanism rooted in the hippocampus,” said co-author Fabian Kloosterman, senior postdoctoral associate.

The team’s results show that long experiences, which in reality could have taken tens of seconds or minutes, are replayed in only a fraction of a second. To do this, the brain links together smaller pieces to construct the memory of the long experience.

The researchers speculated that this strategy could help different areas of the brain share information – and deal with multiple memories that may share content – in a flexible and efficient way. “These results suggest that extended replay is composed of chains of shorter subsequences, which may reflect a strategy for the storage and flexible expression of memories of prolonged experience,” Wilson said.

To me this seals the fate of hippocampus as not just necessary for formation of new memories, but also for novel future-oriented thoughts and imaginations.

Major conscious and unconscious processes in the brain: part 5: Physical substrates of A-cosnciousness

This is the fifth post in my ongoing series on major conscious and unconscious processes in the brain. For earlier parts, click here.

Today , I would like to point to  a few physical models and theories of consciousness that have been proposed that show that consciousness still resides in the brain, although the neural/ supportive processes may be more esoteric. 

I should forewarn before hand that all the theories involve advanced understanding of brains/ physics/ biochemistry etc and that I do not feel qualified enough to understand/ explain all the different theories in their entirety (or even have a surface understanding of them) ; yet , I believe that there are important underlying patterns and that applying the eight stage model to these approaches will only help us further understand and predict and search in the right directions. The style of this post is similar to the part 3 post on robot minds that delineated the different physical approaches that are used to implement intelligence/ brains in machines.

With that as a background, let us look at the major theoretical approaches to locate consciousness and define its underlying substrates. I could find six different physical hypothesis about consciousness on the Wikipedia page:

  1. * Orch-OR theory
  2. * Electromagnetic theories of consciousness
  3. * Holonomic brain theory
  4. * Quantum mind
  5. * Space-time theories of consciousness
  6. * Simulated Reality

Now let me briefly introduce each of the theories and where they seem to have been most successful; again I believe that though this time visually-normal people are perceiving the elephant, yet they are hooked on to its different aspects and need to bind their perspectives together to arrive at the real nature of the elephant.

1. Orch-OR theory:

The Orch OR theory combines Penrose’s hypothesis with respect to the Gödel theorem with Hameroff’s hypothesis with respect to microtubules. Together, Penrose and Hameroff have proposed that when condensates in the brain undergo an objective reduction of their wave function, that collapse connects to non-computational decision taking/experience embedded in the geometry of fundamental spacetime.
The theory further proposes that the microtubules both influence and are influenced by the conventional activity at the synapses between neurons. The Orch in Orch OR stands for orchestrated to give the full name of the theory Orchestrated Objective Reduction. Orchestration refers to the hypothetical process by which connective proteins, known as microtubule associated proteins (MAPs) influence or orchestrate the quantum processing of the microtubules.
Hameroff has proposed that condensates in microtubules in one neuron can link with other neurons via gap junctions[6]. In addition to the synaptic connections between brain cells, gap junctions are a different category of connections, where the gap between the cells is sufficiently small for quantum objects to cross it by means of a process known as quantum tunnelling. Hameroff proposes that this tunnelling allows a quantum object, such as the Bose-Einstein condensates mentioned above, to cross into other neurons, and thus extend across a large area of the brain as a single quantum object.
He further postulates that the action of this large-scale quantum feature is the source of the gamma (40 Hz) synchronisation observed in the brain, and sometimes viewed as a correlate of consciousness [7]. In support of the much more limited theory that gap junctions are related to the gamma oscillation, Hameroff quotes a number of studies from recent year.
From the point of view of consciousness theory, an essential feature of Penrose’s objective reduction is that the choice of states when objective reduction occurs is selected neither randomly, as are choices following measurement or decoherence, nor completely algorithmically. Rather, states are proposed to be selected by a ‘non-computable’ influence embedded in the fundamental level of spacetime geometry at the Planck scale.
Penrose claimed that such information is Platonic, representing pure mathematical truth, aesthetic and ethical values. More than two thousand years ago, the Greek philosopher Plato had proposed such pure values and forms, but in an abstract realm. Penrose placed the Platonic realm at the Planck scale. This relates to Penrose’s ideas concerning the three worlds: physical, mental, and the Platonic mathematical world. In his theory, the physical world can be seen as the external reality, the mental world as information processing in the brain and the Platonic world as the encryption, measurement, or geometry of fundamental spacetime that is claimed to support non-computational understanding.

To me it seems that Orch OR theory is more suitable for forming platonic representations of objects – that is invariant/ideal perception of an object. This I would relate to the Perceptual aspect of A-consciousness.

2. Electromagnetic theories of consciousness

The electromagnetic field theory of consciousness is a theory that says the electromagnetic field generated by the brain (measurable by ECoG) is the actual carrier of conscious experience.
The starting point for these theories is the fact that every time a neuron fires to generate an action potential and a postsynaptic potential in the next neuron down the line, it also generates a disturbance to the surrounding electromagnetic (EM) field. Information coded in neuron firing patterns is therefore reflected into the brain’s EM field. Locating consciousness in the brain’s EM field, rather than the neurons, has the advantage of neatly accounting for how information located in millions of neurons scattered throughout the brain can be unified into a single conscious experience (sometimes called the binding problem): the information is unified in the EM field. In this way EM field consciousness can be considered to be ‘joined-up information’.
However their generation by synchronous firing is not the only important characteristic of conscious electromagnetic fields — in Pockett’s original theory, spatial pattern is the defining feature of a conscious (as opposed to a non-conscious) field.
In McFadden’s cemi field theory, the brain’s global EM field modifies the electric charges across neural membranes and thereby influences the probability that particular neurons will fire, providing a feed-back loop that drives free will.

To me, the EM filed theories seem to be right on track regarding the fact that the EM filed itself may modify / affect the probabilities of firing of individual neurons and thus lead to free will or sense of agency by in some sense causing some neurons to fire over others. I believe we can model the agency aspect of A-consciousness and find neural substrates of the same in brain, using this approach.

3. Holonomic brain theory:

The holonomic brain theory, originated by psychologist Karl Pribram and initially developed in collaboration with physicist David Bohm, is a model for human cognition that is drastically different from conventionally accepted ideas: Pribram and Bohm posit a model of cognitive function as being guided by a matrix of neurological wave interference patterns situated temporally between holographic Gestalt perception and discrete, affective, quantum vectors derived from reward anticipation potentials.
Pribram was originally struck by the similarity of the hologram idea and Bohm’s idea of the implicate order in physics, and contacted him for collaboration. In particular, the fact that information about an image point is distributed throughout the hologram, such that each piece of the hologram contains some information about the entire image, seemed suggestive to Pribram about how the brain could encode memories.
According to Pribram, the tuning of wave frequency in cells of the primary visual cortex plays a role in visual imaging, while such tuning in the auditory system has been well established for decades[citation needed]. Pribram and colleagues also assert that similar tuning occurs in the somatosensory cortex.
Pribram distinguishes between propagative nerve impulses on the one hand, and slow potentials (hyperpolarizations, steep polarizations) that are essentially static. At this temporal interface, he indicates, the wave interferences form holographic patterns.

To me, the holnomic approach seems to be the phenomenon lying between gestalt perception and quantum vectors derived from reward-anticipation potentials or in simple English between the perception and agency components of A-consciousness. this is the Memory aspect of A-consciousness. The use of hologram used to store information as a model, the use of slow waves that are tuned to carry information, the use of this model to explain memory formation (including hyperpolarization etc) all point to the fact that this approach will be most successful in explaining the autobiographical memory that is assited wuith A-cosnciousness.

4. Quantum Mind:

The quantum mind hypothesis proposes that classical mechanics cannot fully explain consciousness and suggests that quantum mechanical phenomena such as quantum entanglement and superposition may play an important part in the brain’s function and could form the basis of an explanation of consciousness.
Recent papers by physicist, Gustav Bernroider, have indicated that he thinks that Bohm’s implicate-explicate structure can account for the relationship between neural processes and consciousness[7]. In a paper published in 2005 Bernroider elaborated his proposals for the physical basis of this process[8]. The main thrust of his paper was the argument that quantum coherence may be sustained in ion channels for long enough to be relevant for neural processes and the channels could be entangled with surrounding lipids and proteins and with other channels in the same membrane. Ion channels regulate the electrical potential across the axon membrane and thus play a central role in the brain’s information processing.
Bernroider uses this recently revealed structure to speculate about the possibility of quantum coherence in the ion channels. Bernroider and co-author Sisir Roy’s calculations suggested to them that the behaviour of the ions in the K channel could only be understood at the quantum level. Taking this as their starting point, they then ask whether the structure of the ion channel can be related to logic states. Further calculations lead them to suggest that the K+ ions and the oxygen atoms of the binding pockets are two quantum-entangled sub-systems, which they then equate to a quantum computational mapping. The ions that are destined to be expelled from the channel are proposed to encode information about the state of the oxygen atoms. It is further proposed the separate ion channels could be quantum entangled with one another.

To me, the quantum entanglement (or bond between different phenomenons)and the encoding of information about the state of the system in that entanglement seems all too similar to feelings as information about the emotional/bodily state. Thus, I propose that these quantum entanglements in these ion-channels may be the substrate that give rise to access to the state of the system, thus giving rise to feelings that is the feeling component of A-consciousness i.e access to one’s own emotional states.

5. Space-time theories of consciousness:

Space-time theories of consciousness have been advanced by Arthur Eddington, John Smythies and other scientists. The concept was also mentioned by Hermann Weyl who wrote that reality is a “…four-dimensional continuum which is neither ‘time’ nor ‘space’. Only the consciousness that passes on in one portion of this world experiences the detached piece which comes to meet it and passes behind it, as history, that is, as a process that is going forward in time and takes place in space”.
In 1953, CD Broad, in common with most authors in this field, proposed that there are two types of time, imaginary time measured in imaginary units (i) and real time measured on the real plane.
It can be seen that for any separation in 3D space there is a time at which the separation in 4D spacetime is zero. Similarly, if another coordinate axis is introduced called ‘real time’ that changes with imaginary time then historical events can also be no distance from a point. The combination of these result in the possibility of brain activity being at a point as well as being distributed in 3D space and time. This might allow the conscious individual to observe things, including whole movements, as if viewing them from a point.
Alex Green has developed an empirical theory of phenomenal consciousness that proposes that conscious experience can be described as a five-dimensional manifold. As in Broad’s hypothesis, space-time can contain vectors of zero length between two points in space and time because of an imaginary time coordinate. A 3D volume of brain activity over a short period of time would have the time extended geometric form of a conscious observation in 5D. Green considers imaginary time to be incompatible with the modern physical description of the world, and proposes that the imaginary time coordinate is a property of the observer and unobserved things (things governed by quantum mechanics), whereas the real time of general relativity is a property of observed things.
These space-time theories of consciousness are highly speculative but have features that their proponents consider attractive: every individual would be unique because they are a space-time path rather than an instantaneous object (i.e., the theories are non-fungible), and also because consciousness is a material thing so direct supervenience would apply. The possibility that conscious experience occupies a short period of time (the specious present) would mean that it can include movements and short words; these would not seem to be possible in a presentist interpretation of experience.
Theories of this type are also suggested by cosmology. The Wheeler-De Witt equation describes the quantum wave function of the universe (or more correctly, the multiverse).

To me, the space-time theories of consciousness that lead to observation/consciousness from a point in the 4d/5d space-time continuum seem to mirror the identity formation function of stage 5.This I relate to evaluation /deliberation aspect of A-consciousness.

6. Simulated Reality
 

In theoretical physics, digital physics holds the basic premise that the entire history of our universe is computable in some sense. The hypothesis was pioneered in Konrad Zuse’s book Rechnender Raum (translated by MIT into English as Calculating Space, 1970), which focuses on cellular automata. Juergen Schmidhuber suggested that the universe could be a Turing machine, because there is a very short program that outputs all possible programmes in an asymptotically optimal way. Other proponents include Edward Fredkin, Stephen Wolfram, and Nobel laureate Gerard ‘t Hooft. They hold that the apparently probabilistic nature of quantum physics is not incompatible with the notion of computability. A quantum version of digital physics has recently been proposed by Seth Lloyd. None of these suggestions has been developed into a workable physical theory.
It can be argued that the use of continua in physics constitutes a possible argument against the simulation of a physical universe. Removing the real numbers and uncountable infinities from physics would counter some of the objections noted above, and at least make computer simulation a possibility. However, digital physics must overcome these objections. For instance, cellular automata would appear to be a poor model for the non-locality of quantum mechanics.

To me the simulation argument is one model of us and the world- i.e we are living in a dream state/ simulation/ digital world where everything is synthetic/ predictable and computable. The alternative view of world as real, analog, continuous world where everything is creative / unpredictable and non-computable. One can , and should have both the models in mind – a simulated reality that is the world and a simulator that is oneself. Jagat mithya, brahma sach. World (simulation) is false, Brahma (creation) is true . Ability to see the world as both a fiction and a reality at the same time, as a fore laid stage and as a creative jazz at the same time leads to this sixth stage of consciousness the A-consciousness of an emergent conscious self that is distinct from mere body/brain. One can see oneself and others as actors acting as per their roles on the world’s stage; or as agents co-creating the reality.

That should be enough for today, but I am sure my astute readers will take this a notch further and propose two more theoretical approaches to consciousness and perhaps look for their neural substrates basde on teh remianing tow stages and componenets of A-consciousness..

Major conscious and unconscious processes in the brain: part 4: the easy problem of A-consciousness

This is the part 4 of the multipart series on conscious and unconscious processes in the brain.

I’ll like to start with a quote from the Mundaka Upanishads:

Two birds, inseparable friends, cling to the same tree. One of them eats the sweet fruit, the other looks on without eating.


On the same tree man sits grieving, immersed, bewildered, by his own impotence. But when he sees the other lord contented and knows his glory, then his grief passes away.

Today I plan to delineate the major conscious processes in the brain, without bothering with their neural correlates or how they are related to unconscious processes that I have delineated earlier. Also I’ll be restricting the discussion mostly to the easy problem of Access or A- consciousness.  leaving the hard problem of phenomenal or P-consciousness for later.

I’ll first like to quote a definition of consciousness form Baars:

The contents of consciousness include the immediate perceptual world; inner speech and visual imagery; the fleeting present and its fading traces in immediate memory; bodily feelings like pleasure, pain, and excitement; surges of feeling; autobiographical events when they are remembered; clear and immediate intentions, expectations and actions; explicit beliefs about oneself and the world; and concepts that are abstract but focal. In spite of decades of behaviouristic avoidance, few would quarrel with this list today.

Next I would like to list the subsystems identified by Charles T tart that are involved in consciousness:

  • EXTEROCEPTION (sensing the external world)
  • INTEROCEPTION (sensing the body)
  • INPUT-PROCESSING (seeing meaningful stimuli)
  • EMOTIONS
  • MEMORY
  • SPACE/TIME SENSE
  • SENSE OF IDENTITY
  • EVALUATION AND DECISION -MAKING
  • MOTOR OUTPUT
  • SUBCONSCIOUS

With this background, let me delineate the major conscious processes/ systems that make up the A-consciousness as per me:-

  1. Perceptual system: Once the spotlight of attention is available, it can be used to bring into focus the unconscious input representations that the brain is creating.  Thus a system may evolve that has access to information regarding the sensations that are being processed or in other words that perceives and is conscious of what is being sensed. To perceive is to have access to ones sensations.  In Tarts model , it is the input-processing module  that ‘sees’ meaningful stimuli and ignores the rest / hides them from second-order representation. This is Baars immediate perceptual world.
  2. Agency system: The spotlight of attention can also bring into foreground the unconscious urges that propel movement. This access to information regarding how and why we move gives rise to the emergence of A-consciousness of will/ volition/agency. To will is to have access to ones action-causes. In tarts model , it is the motor output module that enables sense of voluntary movement. In Baars definition it is clear and immediate intentions, expectations and actions.
  3. Memory system:  The spotlight of attention may also bring into focus past learning. This access to information regarding past unconscious learning gives rise to A-consciousness of remembering/ recognizing. To remember is to have access to past learning. The Tart subsystem for the same is Memory and Baars definition is autobiographical events when they are remembered. 
  4. Feeling (emotional/ mood) system: The spotlight of attention may also highlight the emotional state of the organism. An information about one’s own emotional state gives rise to the A-consciousness of feelings that have an emotional tone/ mood associated. To feel is to have access to ones emotional state. The emotions system of Tart and Baars bodily feelings like pleasure, pain, and excitement; surges of feeling relate to this.
  5. Deliberation/ reasoning/thought system: The spotlight of attention may also highlight the decisional and evaluative unconscious processes that the organism indulges in. An information about which values guided decision can lead to a reasoning module that justifies the decisions and an A-consciousness of introspection. To think is to have access to ones own deliberation and evaluative process. Tarts evaluative and decision making module is for the same. Baars definition may be enhanced to include intorspection i.e access to thoughts and thinking (remember Descartes dictum of I think therefore I am. ) as part of consciousness.
  6. Modeling system that can differentiate and perceive dualism: The spotlight of attention may highlight the dual properties of the world (deterministic and chaotic ). An information regarding the fact that two contradictory models of the world can both be true at the same time, leads to modeling of oneslf that is different from the world giving rise to the difference between ‘this’ and ‘that’ and giving rise to the sense of self. One models both the self and the world based on principles/ subsystems of extereocpetion and interoception and this give rise to A-consciousness of beliefs about the self and the world. To believe is to have access to one’s model of something. One has access to a self/ subjectivity different from world and defined by interoceptive senses ; and a world/ reality different from self defined by exterioceptive senses. The interocpetive and exteroceptive subsystems of  Tart and Baars  explicit beliefs about oneself and the world are relevant here. This system give rise to the concept of a subjective person or self.
  7. Language system that can report on subjective contents and propositions. The spotlight of awareness may  verbalize the unconscious communicative intents and propositions giving rise to access to inner speech and enabling overt language and reporting capabilities. To verbally report is to have access to the underlying narrative that one wants to communicate and that one is creating/confabulating. This narrative and story-telling capability should also in my view lead to the A-consciousness of the stream of consciousness. This would be implemented most probably by Tart’s unconscious and space/time sense modules and relates to Baars the fleeting present and its fading traces in immediate memory- a sense of an ongoing stream of consciousness. To have a stream of consciousness is to have access to one’s inner narrative.
  8. Awareness system that can bring into focal awareness the different conscious process that are seen as  coherent. : the spotlight of attention can also be turned upon itself- an information about what all processes make a coherent whole and are thus being attended and amplified gives rise to a sense of self-identity that is stable across time and  unified in space. To be aware is to have access to what one is attending or focusing on or is ‘conscious’ of. Tarts Sense of identity subsystem and Baars concepts that are abstract but focal relate to this. Once available the spotlight of awareness opens the floodgates of phenomenal or P-consciousness or experience in the here-and-now of qualia that are invariant and experiential in  nature. That ‘feeling of what it means to be’ of course is the subject matter for another day and another post!

Major conscious and unconcoscious processes in the brain

Today I plan to touch upon the topic of consciousness (from which many bloggers shy) and more broadly try to delineate what I believe are the important different conscious and unconscious processes in the brain. I will be heavily using my evolutionary stages model for this.

To clarify myself at the very start , I do not believe in a purely reactive nature of organisms; I believe that apart from reacting to stimuli/world; they also act , on their own, and are thus agents. To elaborate, I believe that neuronal groups and circuits may fire on their own and thus lead to behavior/ action. I do not claim that this firing is under voluntary/ volitional control- it may be random- the important point to note is that there is spontaneous motion.

  1. Sensory system: So to start with I propose that the first function/process the brain needs to develop is to sense its surroundings. This is to avoid predators/ harm in general. this sensory function of brain/sense organs may be unconscious and need not become conscious- as long as an animal can sense danger, even though it may not be aware of the danger, it can take appropriate action – a simple ‘action’ being changing its color to merge with background. 
  2. Motor system:The second function/ process that the brain needs to develop is to have a system that enables motion/movement. This is primarily to explore its environment for food /nutrients. Preys are not going to walk in to your mouth; you have to move around and locate them. Again , this movement need not be volitional/conscious – as long as the animal moves randomly and sporadically to explore new environments, it can ‘see’ new things and eat a few. Again this ‘seeing’ may be as simple as sensing the chemical gradient in a new environmental.
  3. Learning system: The third function/process that the brain needs to develop is to have a system that enables learning. It is not enough to sense the environmental here-and-now. One needs to learn the contingencies in the world and remember that both in space and time. I am inclined to believe that this is primarily pavlovaion conditioning and associative learning, though I don’t rule out operant learning. Again this learning need not be conscious- one need not explicitly refer to a memory to utilize it- unconscious learning and memory of events can suffice and can drive interactions. I also believe that need for this function is primarily driven by the fact that one interacts with similar environments/con specifics/ predators/ preys and it helps to remember which environmental conditions/operant actions lead to what outcomes. This learning could be as simple as stimuli A predict stimuli B and/or that action C predicts reward D .
  4. Affective/ Action tendencies system .The fourth function I propose that the brain needs to develop is a system to control its motor system/ behavior by making it more in sync with its internal state. This I propose is done by a group of neurons monitoring the activity of other neurons/visceral organs and thus becoming aware (in a non-conscious sense)of the global state of the organism and of the probability that a particular neuronal group will fire in future and by thus becoming aware of the global state of the organism , by their outputs they may be able to enable one group to fire while inhibiting other groups from firing. To clarify by way of example, some neuronal groups may be responsible for movement. Another neuronal group may be receiving inputs from these as well as say input from gut that says that no movement has happened for a time and that the organism has also not eaten for a time and thus is in a ‘hungry’ state. This may prompt these neurons to fire in such a way that they send excitatory outputs to the movement related neurons and thus biasing them towards firing and thus increasing the probability that a motion will take place and perhaps the organism by indulging in exploratory behavior may be able to satisfy hunger. Of course they will inhibit other neuronal groups from firing and will themselves stop firing when appropriate motion takes place/ a prey is eaten. Again nothing of this has to be conscious- the state of the organism (like hunger) can be discerned unconsciously and the action-tendencies biasing foraging behavior also activated unconsciously- as long as the organism prefers certain behaviors over others depending on its internal state , everything works perfectly. I propose that (unconscious) affective (emotional) state and systems have emerged to fulfill exactly this need of being able to differentially activate different action-tendencies suited to the needs of the organism. I also stick my neck out and claim that the activation of a particular emotion/affective system biases our sensing also. If the organism is hungry, the food tastes (is unconsciously more vivid) better and vice versa. thus affects not only are action-tendencies , but are also, to an extent, sensing-tendencies.
  5. Decisional/evaluative system: the last function (for now- remember I adhere to eight stage theories- and we have just seen five brain processes in increasing hierarchy) that the brain needs to have is a system to decide / evaluate. Learning lets us predict our world as well as the consequences of our actions. Affective systems provide us some control over our behavior and over our environment- but are automatically activated by the state we are in. Something needs to make these come together such that the competition between actions triggered due to the state we are in (affective action-tendencies) and the actions that may be beneficial given the learning associated with the current stimuli/ state of the world are resolved satisfactorily. One has to balance the action and reaction ratio and the subjective versus objective interpretation/ sensation of environment. The decisional/evaluative system , I propose, does this by associating values with different external event outcomes and different internal state outcomes and by resolving the trade off between the two. This again need not be conscious- given a stimuli predicting a predator in vicinity, and the internal state of the organism as hungry, the organism may have attached more value to ‘avoid being eaten’ than to ‘finding prey’ and thus may not move, but camouflage. On the other hand , if the organisms value system is such that it prefers a hero’s death on battlefield , rather than starvation, it may move (in search of food) – again this could exist in the simplest of unicellular organisms.

Of course all of these brain processes could (and in humans indeed do) have their conscious counterparts like Perception, Volition,episodic Memory, Feelings and Deliberation/thought. That is a different story for a new blog post!

And of course one can also conceive the above in pure reductionist form as a chain below:

sense–>recognize & learn–>evaluate options and decide–>emote and activate action tendencies->execute and move.

and then one can also say that movement leads to new sensation and the above is not a chain , but a part of cycle; all that is valid, but I would sincerely request my readers to consider the possibility of spontaneous and self-driven behavior as separate from reactive motor behavior. 

Dissociable areas of memory (in MTL): Two or three?

There has been some discussion in memory literature as to whether familiarity / novelty detection and recollection (contextual recognition of a stimulus or episodic recall) are independent processes or are the same processes, but only the memory strength varies.

In 2006, an fMRI study came around that showed that there were three dissociable areas in MTL that were associated with familiarity, novelty and recollection detection.

There have been indications that recollection, familiarity, and novelty involve different medial temporal lobe subregions, but available evidence is scarce and inconclusive. Within the medial temporal lobes (MTLs), they found a triple dissociation among the posterior half of the hippocampus, which was associated with recollection, the posterior parahippocampal gyrus, which was associated with familiarity, and anterior half of the hippocampus and rhinal regions, which were associated with novelty. Furthermore, multiple regression analyses based on individual trial activity showed that all three memory signals, i.e., recollection, familiarity, and novelty, make significant and independent contributions to recognition memory performance.

This appeared to be the established dogma to me, till I came across this new PNAS paper, which again strives to swing the pendulum back in favor of memory strengths and a single process for recollection and familiarity/novelty detection. The authors found that while a distinct group of neurons in hippocampus and anygdala was responsible for novelty and familiarity detection, recollection could just be ascertained by the strength of the neural firing of these groups of neurons. Here is the abstract of the study:

Episodic memories allow us to remember not only that we have seen an item before but also where and when we have seen it (context). Sometimes, we can confidently report that we have seen something (familiarity) but cannot recollect where or when it was seen. Thus, the two components of episodic recall, familiarity and recollection, can be behaviorally dissociated. It is not clear, however, whether these two components of memory are represented separately by distinct brain structures or different populations of neurons in a single anatomical structure. Here, we report that the spiking activity of single neurons in the human hippocampus and amygdala [the medial temporal lobe (MTL)] contain information about both components of memory. We analyzed a class of neurons that changed its firing rate to the second presentation of a previously novel stimulus. We found that the neuronal activity evoked by the presentation of a familiar stimulus (during retrieval) distinguishes stimuli that will be successfully recollected from stimuli that will not be recollected. Importantly, the ability to predict whether a stimulus is familiar is not influenced by whether the stimulus will later be recollected. We thus conclude that human MTL neurons contain information about both components of memory. These data support a continuous strength of memory model of MTL function: the stronger the neuronal response, the better the memory.

PNAS has made the article freely available, so go have a look. This is what they discuss:

We analyzed the spiking activity of neurons in the human MTL during retrieval of declarative memories. We found that the neural activity differentiated between stimuli that were only recognized as familiar and stimuli for which (in addition) the spatial location could be recollected. Further, we found that the same neural activity was also present during behavioral errors, but with reduced amplitude. This data are compatible with a continuous signal of memory strength: the stronger the neuronal response, the better the memory. Forgotten stimuli have the weakest memory strength and stimuli that are only recognized but not recollected have medium strength. The strongest memory (and thus neuronal response) is associated with stimuli that are both recognized and recollected.

One methodological flaw of the current study is that it didn’t take the earlier studies showing triple dissociation into account and did not differentiate between MTL neurons based on their location within hippocampus/ amygdala. If they had distinguished based on the location, they might have found some neurons that were selectively coding for recollection. In absence of such observations I find it hard to concur that recollection is not an independent process from familiarity/ novelty detection. Recollection involves binding the familiarity/ novelty cues with other neuronal cues in MTL like neurons that code for time and place . It may be that the current study completely missed out on those integrator neurons.

Go to Top